The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

Pcho1  -  plasma cholesterol 1

Mus musculus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pcho1


Psychiatry related information on Pcho1

  • Whether or not changes in the plasma cholesterol concentration alter sterol metabolism in the CNS or whether such changes affect cognitive function in the brain or the incidence of dementia remain uncertain at this time [6].
  • CONCLUSIONS: Our results show that the combination of loss of apoE function with high plasma cholesterol and especially brain injury results in dramatic BBB defects in the cortex and may explain in part the importance of apoE in Alzheimer's disease and in successful recovery from brain injury [7].

High impact information on Pcho1


Chemical compound and disease context of Pcho1


Biological context of Pcho1


Anatomical context of Pcho1


Associations of Pcho1 with chemical compounds


Regulatory relationships of Pcho1


Other interactions of Pcho1


Analytical, diagnostic and therapeutic context of Pcho1


  1. Combined hyperlipidemia in transgenic mice overexpressing human apolipoprotein Cl. Shachter, N.S., Ebara, T., Ramakrishnan, R., Steiner, G., Breslow, J.L., Ginsberg, H.N., Smith, J.D. J. Clin. Invest. (1996) [Pubmed]
  2. Coincidence of genetic loci for plasma cholesterol levels and obesity in a multifactorial mouse model. Warden, C.H., Fisler, J.S., Pace, M.J., Svenson, K.L., Lusis, A.J. J. Clin. Invest. (1993) [Pubmed]
  3. Cutaneous xanthoma in association with paraproteinemia in the absence of hyperlipidemia. Feingold, K.R., Castro, G.R., Ishikawa, Y., Fielding, P.E., Fielding, C.J. J. Clin. Invest. (1989) [Pubmed]
  4. Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. Renard, C.B., Kramer, F., Johansson, F., Lamharzi, N., Tannock, L.R., von Herrath, M.G., Chait, A., Bornfeldt, K.E. J. Clin. Invest. (2004) [Pubmed]
  5. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Smith, J.D., Trogan, E., Ginsberg, M., Grigaux, C., Tian, J., Miyata, M. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  6. Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. Dietschy, J.M., Turley, S.D. J. Lipid Res. (2004) [Pubmed]
  7. ApoE deficiency compromises the blood brain barrier especially after injury. Methia, N., André, P., Hafezi-Moghadam, A., Economopoulos, M., Thomas, K.L., Wagner, D.D. Mol. Med. (2001) [Pubmed]
  8. Hepatocyte nuclear factor-1alpha is an essential regulator of bile acid and plasma cholesterol metabolism. Shih, D.Q., Bussen, M., Sehayek, E., Ananthanarayanan, M., Shneider, B.L., Suchy, F.J., Shefer, S., Bollileni, J.S., Gonzalez, F.J., Breslow, J.L., Stoffel, M. Nat. Genet. (2001) [Pubmed]
  9. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Plump, A.S., Smith, J.D., Hayek, T., Aalto-Setälä, K., Walsh, A., Verstuyft, J.G., Rubin, E.M., Breslow, J.L. Cell (1992) [Pubmed]
  10. Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Praticò, D., Tangirala, R.K., Rader, D.J., Rokach, J., FitzGerald, G.A. Nat. Med. (1998) [Pubmed]
  11. Tamoxifen elevates transforming growth factor-beta and suppresses diet-induced formation of lipid lesions in mouse aorta. Grainger, D.J., Witchell, C.M., Metcalfe, J.C. Nat. Med. (1995) [Pubmed]
  12. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Berge, K.E., Tian, H., Graf, G.A., Yu, L., Grishin, N.V., Schultz, J., Kwiterovich, P., Shan, B., Barnes, R., Hobbs, H.H. Science (2000) [Pubmed]
  13. Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Teupser, D., Pavlides, S., Tan, M., Gutierrez-Ramos, J.C., Kolbeck, R., Breslow, J.L. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  14. Dietary sphingolipids lower plasma cholesterol and triacylglycerol and prevent liver steatosis in APOE*3Leiden mice. Duivenvoorden, I., Voshol, P.J., Rensen, P.C., van Duyvenvoorde, W., Romijn, J.A., Emeis, J.J., Havekes, L.M., Nieuwenhuizen, W.F. Am. J. Clin. Nutr. (2006) [Pubmed]
  15. Western-type diets induce insulin resistance and hyperinsulinemia in LDL receptor-deficient mice but do not increase aortic atherosclerosis compared with normoinsulinemic mice in which similar plasma cholesterol levels are achieved by a fructose-rich diet. Merat, S., Casanada, F., Sutphin, M., Palinski, W., Reaven, P.D. Arterioscler. Thromb. Vasc. Biol. (1999) [Pubmed]
  16. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors. Takeda, M., Noshiro, R., Onozato, M.L., Tojo, A., Hasannejad, H., Huang, X.L., Narikawa, S., Endou, H. Eur. J. Pharmacol. (2004) [Pubmed]
  17. A novel thromboxane receptor antagonist and synthase inhibitor, BM-573, reduces development and progression of atherosclerosis in LDL receptor deficient mice. Cyrus, T., Yao, Y., Ding, T., Dogné, J.M., Praticò, D. Eur. J. Pharmacol. (2007) [Pubmed]
  18. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. Pászty, C., Maeda, N., Verstuyft, J., Rubin, E.M. J. Clin. Invest. (1994) [Pubmed]
  19. Endothelin ETA receptor blockade restores NO-mediated endothelial function and inhibits atherosclerosis in apolipoprotein E-deficient mice. Barton, M., Haudenschild, C.C., d'Uscio, L.V., Shaw, S., Münter, K., Lüscher, T.F. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  20. Deficiency of acyl CoA:cholesterol acyltransferase 2 prevents atherosclerosis in apolipoprotein E-deficient mice. Willner, E.L., Tow, B., Buhman, K.K., Wilson, M., Sanan, D.A., Rudel, L.L., Farese, R.V. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  21. Apolipoprotein E2 reduces the low density lipoprotein level in transgenic mice by impairing lipoprotein lipase-mediated lipolysis of triglyceride-rich lipoproteins. Huang, Y., Liu, X.Q., Rall, S.C., Mahley, R.W. J. Biol. Chem. (1998) [Pubmed]
  22. Increased bone formation in mice lacking apolipoprotein E. Schilling, A.F., Schinke, T., Münch, C., Gebauer, M., Niemeier, A., Priemel, M., Streichert, T., Rueger, J.M., Amling, M. J. Bone Miner. Res. (2005) [Pubmed]
  23. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Zhang, S.H., Reddick, R.L., Piedrahita, J.A., Maeda, N. Science (1992) [Pubmed]
  24. Class III P-glycoproteins mediate the formation of lipoprotein X in the mouse. Elferink, R.P., Ottenhoff, R., van Marle, J., Frijters, C.M., Smith, A.J., Groen, A.K. J. Clin. Invest. (1998) [Pubmed]
  25. Retroviral gene therapy in ApoE-deficient mice: ApoE expression in the artery wall reduces early foam cell lesion formation. Hasty, A.H., Linton, M.F., Brandt, S.J., Babaev, V.R., Gleaves, L.A., Fazio, S. Circulation (1999) [Pubmed]
  26. Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Devlin, C.M., Kuriakose, G., Hirsch, E., Tabas, I. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  27. The role of alpha1-fetoprotein transcription factor/LRH-1 in bile acid biosynthesis: a known nuclear receptor activator that can act as a suppressor of bile acid biosynthesis. del Castillo-Olivares, A., Campos, J.A., Pandak, W.M., Gil, G. J. Biol. Chem. (2004) [Pubmed]
  28. Type III hyperlipoproteinemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse Apoe with human Apoe*2. Sullivan, P.M., Mezdour, H., Quarfordt, S.H., Maeda, N. J. Clin. Invest. (1998) [Pubmed]
  29. Paradoxical enhancement of atherosclerosis by probucol treatment in apolipoprotein E-deficient mice. Zhang, S.H., Reddick, R.L., Avdievich, E., Surles, L.K., Jones, R.G., Reynolds, J.B., Quarfordt, S.H., Maeda, N. J. Clin. Invest. (1997) [Pubmed]
  30. Reduced plasma cholesterol and increased fecal sterol loss in multidrug resistance gene 2 P-glycoprotein-deficient mice. Voshol, P.J., Havinga, R., Wolters, H., Ottenhoff, R., Princen, H.M., Oude Elferink, R.P., Groen, A.K., Kuipers, F. Gastroenterology (1998) [Pubmed]
  31. Cholesterol inhibition, cancer, and chemotherapy. Buchwald, H. Lancet (1992) [Pubmed]
  32. Sitosterolemia in ABC-transporter G5-deficient mice is aggravated on activation of the liver-X receptor. Plösch, T., Bloks, V.W., Terasawa, Y., Berdy, S., Siegler, K., Van Der Sluijs, F., Kema, I.P., Groen, A.K., Shan, B., Kuipers, F., Schwarz, M., Schwartz, M. Gastroenterology (2004) [Pubmed]
  33. A biphasic response of hepatobiliary cholesterol metabolism to dietary fat at the onset of obesity in the mouse. Roy, S., Hyogo, H., Yadav, S.K., Wu, M.K., Jelicks, L.A., Locker, J.D., Frank, P.G., Lisanti, M.P., Silver, D.L., Cohen, D.E. Hepatology (2005) [Pubmed]
  34. Testing the role of apoA-I, HDL, and cholesterol efflux in the atheroprotective action of low-level apoE expression. Thorngate, F.E., Yancey, P.G., Kellner-Weibel, G., Rudel, L.L., Rothblat, G.H., Williams, D.L. J. Lipid Res. (2003) [Pubmed]
  35. Phosphatidylcholine transfer protein regulates size and hepatic uptake of high-density lipoproteins. Wu, M.K., Cohen, D.E. Am. J. Physiol. Gastrointest. Liver Physiol. (2005) [Pubmed]
  36. The mouse CCR2 gene is regulated by two promoters that are responsive to plasma cholesterol and peroxisome proliferator-activated receptor gamma ligands. Chen, Y., Green, S.R., Ho, J., Li, A., Almazan, F., Quehenberger, O. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  37. In Vivo Responsiveness to Ezetimibe Correlates with Niemann-Pick C1 Like-1 (NPC1L1) Binding Affinity: Comparison of Multiple Species NPC1L1 Orthologs. Hawes, B.E., O'neill, K.A., Yao, X., Crona, J.H., Davis, H.R., Graziano, M.P., Altmann, S.W. Mol. Pharmacol. (2007) [Pubmed]
  38. Estrogen receptor alpha is a major mediator of 17beta-estradiol's atheroprotective effects on lesion size in Apoe-/- mice. Hodgin, J.B., Krege, J.H., Reddick, R.L., Korach, K.S., Smithies, O., Maeda, N. J. Clin. Invest. (2001) [Pubmed]
  39. The two-receptor model of lipoprotein clearance: tests of the hypothesis in "knockout" mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Ishibashi, S., Herz, J., Maeda, N., Goldstein, J.L., Brown, M.S. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  40. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Rashid, S., Curtis, D.E., Garuti, R., Anderson, N.N., Bashmakov, Y., Ho, Y.K., Hammer, R.E., Moon, Y.A., Horton, J.D. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  41. Knockout of the abetalipoproteinemia gene in mice: reduced lipoprotein secretion in heterozygotes and embryonic lethality in homozygotes. Raabe, M., Flynn, L.M., Zlot, C.H., Wong, J.S., Véniant, M.M., Hamilton, R.L., Young, S.G. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  42. Cholesterol feeding of mice expressing cholesterol 7alpha-hydroxylase increases bile acid pool size despite decreased enzyme activity. Tiemann, M., Han, Z., Soccio, R., Bollineni, J., Shefer, S., Sehayek, E., Breslow, J.L. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  43. Inhibition of diet-induced atheroma formation in transgenic mice expressing apolipoprotein E in the arterial wall. Shimano, H., Ohsuga, J., Shimada, M., Namba, Y., Gotoda, T., Harada, K., Katsuki, M., Yazaki, Y., Yamada, N. J. Clin. Invest. (1995) [Pubmed]
  44. Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Herz, J., Gerard, R.D. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  45. Marked reduction of high density lipoprotein cholesterol in mice genetically modified to lack apolipoprotein A-I. Williamson, R., Lee, D., Hagaman, J., Maeda, N. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  46. Aggressive very low-density lipoprotein (VLDL) and LDL lowering by gene transfer of the VLDL receptor combined with a low-fat diet regimen induces regression and reduces macrophage content in advanced atherosclerotic lesions in LDL receptor-deficient mice. MacDougall, E.D., Kramer, F., Polinsky, P., Barnhart, S., Askari, B., Johansson, F., Varon, R., Rosenfeld, M.E., Oka, K., Chan, L., Schwartz, S.M., Bornfeldt, K.E. Am. J. Pathol. (2006) [Pubmed]
WikiGenes - Universities