The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Equine cytochrome P450 aromatase exhibits an estrogen 2-hydroxylase activity in vitro.

Aromatase (estrogen synthetase) is a steroidogenic enzyme complex which catalyzes the conversion of androgens to estrogens (termed aromatization). This enzyme was purified from adult equine testis to homogeneity by five chromatographic steps. The ability of purified and reconstituted equine aromatase to exhibit an estrogen 2-hydroxylase activity was tested and compared to testosterone aromatization. Enzymatic activities were assessed by tritiated water release from labelled estradiol and testosterone. Kinetic analysis of estradiol 2-hydroxylation showed an apparent K(m) of 23 microM and a V(max) of 18 nmol/min/mg, whereas the values for testosterone aromatization were a K(m) of 15.7 nM and a V(max) of 34.6 pmol/min/mg. A specific antiserum raised against purified testicular equine P450arom and known to inhibit aromatase activity [1] was also found to inhibit the estrogen hydroxylase activity of equine placental microsomes in a dose-dependent manner with an IC50 value of 15 microl serum: 0.5 ml incubate. The estrogen hydroxylase activity was inhibited in a dose-dependent manner by two classes of aromatase inhibitors, i.e. steroidal-- (4-hydroxyandrostenedione and 7alpha-([4-aminophenyl]thio)-androst-4-ene-3, 17-dione)--and non-steroidal--(fadrozole and miconazole). The IC50 values were approximately 300 and 890 nM for 4-hydroxyandrostenedione and 7alpha-([4-aminophenyl]thio)-androst-4-ene-3, 17-dione, and 92 and 285 nM, for fadrozole and miconazole, respectively. Furthermore, 4-hydroxyandrostenedione caused a time-dependent inactivation of estrogen hydroxylase activity. We conclude that equine aromatase is able to use estradiol as a substrate, and converts it to catechol estradiol in vitro, possibly using the active site of aromatization. This is the first demonstration that equine aromatase functions as an estrogen 2-hydroxylase, in addition to transforming androgens into estrogen.[1]


  1. Equine cytochrome P450 aromatase exhibits an estrogen 2-hydroxylase activity in vitro. Almadhidi, J., Moslemi, S., Drosdowsky, M.A., Séralini, G.E. J. Steroid Biochem. Mol. Biol. (1996) [Pubmed]
WikiGenes - Universities