The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Low catalytic turnover of horseradish peroxidase in thiocyanate oxidation. Evidence for concurrent inactivation by cyanide generated through one-electron oxidation of thiocyanate.

The catalytic turnover of horseradish peroxidase (HRP) to oxidize SCN- is a hundredfold lower than that of lactoperoxidase ( LPO) at optimum pH. While studying the mechanism, HRP was found to be reversibly inactivated following pseudo-first order kinetics with a second order rate constant of 400 M-1 min-1 when incubated with SCN- and H2O2. The slow rate of SCN- oxidation is increased severalfold in the presence of free radical traps, 5-5-dimethyl-1-pyrroline N-oxide or alpha-phenyl-tert-butylnitrone, suggesting the plausible role of free radical or radical-derived product in the inactivation. Spectral studies indicate that SCN- at a lower concentrations slowly reduces compound II to native state by one-electron transfer as evidenced by a time-dependent spectral shift from 418 to 402 nm through an isosbestic point at 408 nm. In the presence of higher concentrations of SCN-, a new stable Soret peak appears at 421 nm with a visible peak at 540 nm, which are the characteristics of the inactivated enzyme. The one-electron oxidation product of SCN- was identified by electron spin resonance spectroscopy as 5-5-dimethyl-1-pyrroline N-oxide adduct of the sulfur-centered thiocyanate radical (aN = 15.0 G and abetaH = 16.5 G). The inactivation of the enzyme in the presence of SCN- and H2O2 is prevented by electron donors such as iodide or guaiacol. Binding studies indicate that both iodide and guaiacol compete with SCN- for binding at or near the SCN- binding site and thus prevent inactivation. The spectral characteristics of the inactivated enzyme are exactly similar to those of the native HRP-CN- complex. Quantitative measurements indicate that HRP produces a 10-fold higher amount of CN- than LPO when incubated with SCN- and H2O2. As HRP has higher affinity for CN- than LPO, it is concurrently inactivated by CN- formed during SCN- oxidation, which is not observed in case of LPO. This study further reveals that HRP catalyzes SCN- oxidation by two one-electron transfers with the intermediate formation of thiocyanate radicals. The radicals dimerize to form thiocyanogen, (SCN)2, which is hydrolyzed to form CN-. As LPO forms OSCN- as the major stable oxidation product through a two-electron transfer mechanism, it is not significantly inactivated by CN- formed in a small quantity.[1]


WikiGenes - Universities