The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

RFC-1 gene expression regulates folate absorption in mouse small intestine.

Mediated folate compound transport inward in isolated luminal epithelial cells from mouse small intestine was delineated as pH-dependent and non-pH-dependent components on the basis of their differential sensitivity to the stilbene inhibitor, 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid. pH dependence was manifested as higher maximum capacity (Vmax) for influx of l, L-5-CH3-H4folate at acidic pH compared with neutral or alkaline pH with no effect on saturability (Km). The pH-dependent component was relatively insensitive to inhibition by 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid and highly saturable (Km or Ki = 2 to 4 microM) in the case of folic acid, folate coenzymes, and 4-aminofolate analogues as permeants or inhibitors. The non-pH-dependent component was highly sensitive to 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid and poorly and variably saturable (Km or Ki = 20 to >2000 microM) with respect to these folate compounds. Only the pH-dependent transport component was developmentally regulated, showing much higher maximum capacity for l,L-5-CH3-H4folate influx in mature absorptive rather than proliferative crypt cells. The increase in pH-dependent influx during maturation was associated with an increase in RFC-1 gene expression in the form of a 2.5-kilobase RNA transcript and 58-kDa brush-border membrane protein detected by folate-based affinity labeling and with anti-mouse RFC-1 peptide antibodies. The size of this protein was the same as that encoded by RFC-1 mRNA. The treatment of mature absorptive cells with either the affinity label or the anti-RFC-1 peptide antibodies inhibited influx of l, L-[3H]-5-CH3-H4folate in a concentration-dependent manner. These results strongly suggest that pH-dependent folate absorption in this tissue is regulated by RFC-1 gene expression.[1]

References

  1. RFC-1 gene expression regulates folate absorption in mouse small intestine. Chiao, J.H., Roy, K., Tolner, B., Yang, C.H., Sirotnak, F.M. J. Biol. Chem. (1997) [Pubmed]
 
WikiGenes - Universities