The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Resistance to amikacin and isepamicin in rabbits with experimental endocarditis of an aac(6')-Ib-bearing strain of Klebsiella pneumoniae susceptible in vitro.

The effect of production of the aminoglycoside 6'-N-acetyltransferase [AAC(6')-IB] in Klebsiella pneumoniae on the outcome of amikacin and isepamicin treatment of rabbits with experimental endocarditis was assessed. Isogenic high-level (Hi) and low-level (Lo) AAC(6')-Ib-producing transconjugants (T) were constructed from clinical isolates with plasmid-borne resistance determinants. The MICs of amikacin and isepamicin, their bactericidal effects, and AAC(6')-Ib production appeared to be well correlated among the clinical isolates and the transconjugants. The susceptibility data determined in vitro, with MICs (in micrograms per milliliter) of amikacin and isepamicin for LoT and HiT of 4 and 0.5 and 32 and 8, respectively, were, however, not predictive of the in vivo efficacies of the drugs. While amikacin and isepamicin caused reductions in bacterial densities (log10 CFU per gram of cardiac vegetation) of 5.1 and 4.8 of the fully susceptible recipient strain (MICs of amikacin and isepamicin, 0.5 and 0.25, respectively), the reductions in density of both LoT and HiT caused by the two drugs (2.7 and 2.4 and 2.9 and 2.2, respectively) were only marginally significant, if at all. There was no significant difference (P > 0.05) when the reductions in density of LoT and HiT by either drug were compared or when the efficacies of the two drugs in reducing the density of any strain [non-AAC(6')-producing, LoT, or HiT] were compared (P > 0.5). It is concluded that AAC(6')-Ib in K.pneumoniae, even when produced at a low level and not conferring resistance to amikacin and isepamicin in vitro, compromises the efficacies of both drugs in vivo and possibly does so beyond the experimental model studied here.[1]

References

 
WikiGenes - Universities