The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Transneuronal transport of intracellularly injected biotinamide in primary afferent axons.

Transneuronal transport of biotinamide was observed following intracellular injection of biotinamide into rat jaw-muscle spindle afferent axons. Microelectrodes were advanced into the mesencephalic nucleus of the trigeminal nerve where jaw-muscle spindle afferent axons were identified by their increased firing during stretching of the jaw-elevator muscles. Biotinamide (Neurobiotin) was then injected into individual axons and the animals were maintained under anesthesia for 2-6 h. The animals were then killed via an overdose of anesthetic and the brainstem was processed histochemically. Biotinamide-filled axon collaterals and terminals were readily visible in the trigeminal motor nucleus, the trigeminal sensory nuclei, and adjacent reticular formation. In addition to these intracellularly stained axons, two to five neurons per animal (total of 36 in eight rats) were observed with a homogeneous gray reaction product distributed throughout their somata, proximal, and secondary dendrites. These neurons ranged in size from small (8-20 mu m, n - 26) to medium-sized (<30 mu m, n = 10) and were closely apposed by numerous (up to 20) biotinamide-stained spindle afferent boutons. Most of these neurons (n = 22) were located in the dorsomedial portion of the spinal trigeminal subnucleus interpolaris (Vi) 2.5-4.5 mm caudal to the intra-axonal injection site. Electron microscopic analysis in two rats suggests that the transneuronal biotinamide labeling occurred predominantly through asymmetric, axodendritic synapses between biotinamide-filled axon terminals and Vi neuronal dendrites. Although recent in vitro studies have reported that biotinamide permeates through gap junctions, in this study we found no evidence of biotinamide traversing the gap junctions which exist between trigeminal mesencephalic nucleus (Vme) neuronal somata. These results demonstrate that biotinamide can occasionally be transneuronally transported presumably via synapses; further information is needed to explain the seemingly sporadic nature of this transport.[1]


WikiGenes - Universities