The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Microelectrodes


Psychiatry related information on Microelectrodes


High impact information on Microelectrodes

  • Changes in transepithelial bioelectric properties and the permeability of the apical membrane to chloride in response to extracellular (apical) UTP were determined with ion-selective microelectrodes in cultured nasal epithelia [8].
  • Until recently, intracellular free calcium has been amenable to measurement and investigation only in cells large enough to permit either microinjection of a suitable Ca sensor such as a aequorin or arsenazo III or insertion of a Ca-sensitive microelectrode [9].
  • In microelectrode experiments acetylcholine (ACh), gastrin-cholecystokinin (CCK) as well as bombesin peptides evoked Ca2+-dependent opening of the K+ conductance pathway, resulting in membrane hyperpolarization [10].
  • With the exception of the ion-sensitive microelectrodes developed for acetylcholine, these techniques are elaborate and time consuming, and cannot be routinely applied to every electrode used [11].
  • Lithium accumulation by snail neurones measured by a new Li+-sensitive microelectrode [12].

Chemical compound and disease context of Microelectrodes


Biological context of Microelectrodes


Anatomical context of Microelectrodes


Associations of Microelectrodes with chemical compounds

  • Calcium ion-selective microelectrodes made with Simon's neutral carrier were used to measure simultaneously sarcoplasmic Ca2+ activity (aiCa) and resting tension (Tr) of rabbit ventricular muscle during reduction and restoration of external sodium ion concentration, [Na]0 [28].
  • The sodium-selective ligand 1,1,1-tris[1(1)-(2(1)-oxa-4(1)-oxo-5(1)-aza-5(1)-methyl)dodecanyl]propane dissolved in 3-nitro-o-xylene containing a small amount of the lipophilic anion tetrachlorophenyl borate was used as a liquid ion-exchanger in sodium-selective microelectrodes [29].
  • Sensitive Clark-type O2 microelectrodes were inserted into renal cortex and medulla of anesthetized rats [30].
  • Membrane electric potential difference (PD) and the responses to luminal Cl- replacement, isoproterenol, and amiloride were measured with intracellular microelectrodes [31].
  • By cable analysis and intracellular microelectrode impalement in the in vitro perfused renal tubule, we identified alpha- and beta-intercalated (IC) cells along the rabbit distal nephron segments, including the connecting tubule (CNT), the cortical collecting duct (CCD), and the outer medullary collecting duct in the inner stripe (OMCDi) [32].

Gene context of Microelectrodes

  • In the present study we applied patch-clamp whole-cell recordings and measurements of Ca(2+) concentration by ion-selective microelectrodes in eyes of normal and mutant Drosophila to isolate the TRP and TRP-like (TRPL)-dependent currents [33].
  • The release of NO from NO-ASA, determined with a selective microelectrode was paralleled by the induction of NQO1 and abrogated by NO scavengers; an exogenous NO donor also induced the expression of NQO1 [34].
  • We have examined electrophysiological properties of myelinated axons in hNF-H +/+ mice using intraaxonal microelectrode recording from isolated sciatic and tibial nerves [35].
  • MCT1 activity was assessed by changes of intracellular H+ concentration measured by pH-selective microelectrodes during application of lactate [36].
  • CONCLUSIONS: These data indicate that CA IX cannot be recommended as a substitute for oxygen microelectrode measurements [37].

Analytical, diagnostic and therapeutic context of Microelectrodes


  1. The cellular electrophysiologic effects of digitalis on human atrial fibers. Hordof, A.J., Spotnitz, A., Mary-Rabine, L., Edie, R.N., Rosen, M.R. Circulation (1978) [Pubmed]
  2. pH-dependent electrophysiological effects of quinidine and lidocaine on canine cardiac purkinje fibers. Nattel, S., Elharrar, V., Zipes, D.P., Bailey, J.C. Circ. Res. (1981) [Pubmed]
  3. High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. Frenguelli, B.G., Llaudet, E., Dale, N. J. Neurochem. (2003) [Pubmed]
  4. Neuroprotective effects of D-allose against retinal ischemia-reperfusion injury. Hirooka, K., Miyamoto, O., Jinming, P., Du, Y., Itano, T., Baba, T., Tokuda, M., Shiraga, F. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  5. Intracellular pH and its relationship to regulation of ion transport in normal and cystic fibrosis human nasal epithelia. Willumsen, N.J., Boucher, R.C. J. Physiol. (Lond.) (1992) [Pubmed]
  6. Dehydrogenase-modified carbon-fiber microelectrodes for the measurement of neurotransmitter dynamics. 2. Covalent modification utilizing avidin-biotin technology. Pantano, P., Kuhr, W.G. Anal. Chem. (1993) [Pubmed]
  7. Dopamine release is severely compromised in the R6/2 mouse model of Huntington's disease. Johnson, M.A., Rajan, V., Miller, C.E., Wightman, R.M. J. Neurochem. (2006) [Pubmed]
  8. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. Knowles, M.R., Clarke, L.L., Boucher, R.C. N. Engl. J. Med. (1991) [Pubmed]
  9. Intracellular Ca indicator Quin-2 inhibits Ca2+ inflow via Na/Ca exchange in squid axon. Allen, T.J., Baker, P.F. Nature (1985) [Pubmed]
  10. Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells. Maruyama, Y., Petersen, O.H., Flanagan, P., Pearson, G.T. Nature (1983) [Pubmed]
  11. Quantification of noradrenaline iontophoresis. Armstrong-James, M., Millar, J., Kruk, Z.L. Nature (1980) [Pubmed]
  12. Lithium accumulation by snail neurones measured by a new Li+-sensitive microelectrode. Thomas, R.C., Simon, W., Oehme, M. Nature (1975) [Pubmed]
  13. Effect of acute hyperglycemia on oxygen and oxidative metabolism in the intact cat retina. Padnick-Silver, L., Linsenmeier, R.A. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  14. Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. Fu, X.W., Nurse, C.A., Wong, V., Cutz, E. J. Physiol. (Lond.) (2002) [Pubmed]
  15. Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Roitbak, T., Syková, E. Glia (1999) [Pubmed]
  16. Directed retinal nerve cell growth for use in a retinal prosthesis interface. Leng, T., Wu, P., Mehenti, N.Z., Bent, S.F., Marmor, M.F., Blumenkranz, M.S., Fishman, H.A. Invest. Ophthalmol. Vis. Sci. (2004) [Pubmed]
  17. The relation between cerebral metabolic rate and ischemic depolarization. A comparison of the effects of hypothermia, pentobarbital, and isoflurane. Nakashima, K., Todd, M.M., Warner, D.S. Anesthesiology (1995) [Pubmed]
  18. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. Gembal, M., Gilon, P., Henquin, J.C. J. Clin. Invest. (1992) [Pubmed]
  19. Anticholinergic effects of class III antiarrhythmic drugs in guinea pig atrial cells. Different molecular mechanisms. Mori, K., Hara, Y., Saito, T., Masuda, Y., Nakaya, H. Circulation (1995) [Pubmed]
  20. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Fukumura, D., Gohongi, T., Kadambi, A., Izumi, Y., Ang, J., Yun, C.O., Buerk, D.G., Huang, P.L., Jain, R.K. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  21. Release of cortical catecholamines by visual stimulation requires activity in thalamocortical afferents of monkey and cat. Marrocco, R.T., Lane, R.F., McClurkin, J.W., Blaha, C.D., Alkire, M.F. J. Neurosci. (1987) [Pubmed]
  22. Potassium-dependent volume regulation in retinal pigment epithelium is mediated by Na,K,Cl cotransport. Adorante, J.S., Miller, S.S. J. Gen. Physiol. (1990) [Pubmed]
  23. Calcium regulation during stimulus-secretion coupling: continuous measurement of intracellular calcium activities. O'Doherty, J., Youmans, S.J., Armstrong, W.M., Stark, R.J. Science (1980) [Pubmed]
  24. Membrane effects of thyrotropin-releasing hormone and estrogen shown by intracellular recording from pituitary cells. Dufy, B., Vincent, J.D., Fleury, H., Du Pasquier, P., Gourdji, D., Tixier-Vidal, A. Science (1979) [Pubmed]
  25. Axial bending in the early chick embryo by a cyclic adenosine monophosphate source. Robertson, A., Gingle, A.R. Science (1977) [Pubmed]
  26. Effects of luminal hyperosmolality on cellular and paracellular ion transport pathways in necturus antrum. Soybel, D.I., Ashley, S.W., DeSchryver-Kecskemeti, K., Cheung, L.Y. Gastroenterology (1987) [Pubmed]
  27. Intracellular pH in isolated Necturus antral mucosa exposed to luminal acid. Kiviluoto, T., Paimela, H., Mustonen, H., Kivilaakso, E. Gastroenterology (1990) [Pubmed]
  28. Sodium-calcium exchange in rabbit heart muscle cells: direct measurement of sarcoplasmic Ca2+ activity. Lee, C.O., Uhm, D.Y., Dresdner, K. Science (1980) [Pubmed]
  29. Sodium-selective liquid ion-exchanger microelectrodes for intracellular measurements. O'Doherty, J., Garcia-Diaz, J.F., Armstrong, W.M. Science (1979) [Pubmed]
  30. Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys. Brezis, M., Heyman, S.N., Dinour, D., Epstein, F.H., Rosen, S. J. Clin. Invest. (1991) [Pubmed]
  31. Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. An in vitro electrophysiologic analysis. Cotton, C.U., Stutts, M.J., Knowles, M.R., Gatzy, J.T., Boucher, R.C. J. Clin. Invest. (1987) [Pubmed]
  32. Electrophysiological identification of alpha- and beta-intercalated cells and their distribution along the rabbit distal nephron segments. Muto, S., Yasoshima, K., Yoshitomi, K., Imai, M., Asano, Y. J. Clin. Invest. (1990) [Pubmed]
  33. Metabolic stress reversibly activates the Drosophila light-sensitive channels TRP and TRPL in vivo. Agam, K., von Campenhausen, M., Levy, S., Ben-Ami, H.C., Cook, B., Kirschfeld, K., Minke, B. J. Neurosci. (2000) [Pubmed]
  34. NO-donating aspirin induces phase II enzymes in vitro and in vivo. Gao, J., Kashfi, K., Liu, X., Rigas, B. Carcinogenesis (2006) [Pubmed]
  35. Altered ionic conductances in axons of transgenic mouse expressing the human neurofilament heavy gene: A mouse model of amyotrophic lateral sclerosis. Kriz, J., Meier, J., Julien, J.P., Padjen, A.L. Exp. Neurol. (2000) [Pubmed]
  36. Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase. Becker, H.M., Hirnet, D., Fecher-Trost, C., Sültemeyer, D., Deitmer, J.W. J. Biol. Chem. (2005) [Pubmed]
  37. Carbonic anhydrase IX expression and tumor oxygenation status do not correlate at the microregional level in locally advanced cancers of the uterine cervix. Mayer, A., Höckel, M., Vaupel, P. Clin. Cancer Res. (2005) [Pubmed]
  38. pH transients evoked by excitatory synaptic transmission are increased by inhibition of extracellular carbonic anhydrase. Chen, J.C., Chesler, M. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  39. Pallidal neuronal activity: implications for models of dystonia. Hutchison, W.D., Lang, A.E., Dostrovsky, J.O., Lozano, A.M. Ann. Neurol. (2003) [Pubmed]
  40. Aldose reductase inhibition, nerve perfusion, oxygenation and function in streptozotocin-diabetic rats: dose-response considerations and independence from a myo-inositol mechanism. Cameron, N.E., Cotter, M.A., Dines, K.C., Maxfield, E.K., Carey, F., Mirrlees, D.J. Diabetologia (1994) [Pubmed]
  41. Effects of quinidine on vascular resistance and sympathetic nerve activity in humans. Mariano, D.J., Schomer, S.J., Rea, R.F. J. Am. Coll. Cardiol. (1992) [Pubmed]
  42. Anesthetic-induced burst suppression EEG activity requires glutamate-mediated excitatory synaptic transmission. Lukatch, H.S., Kiddoo, C.E., Maciver, M.B. Cereb. Cortex (2005) [Pubmed]
WikiGenes - Universities