Antioxidant enzymes in malignant prostate cell lines and in primary cultured prostatic cells.
The antioxidant enzymes catalase, glutathione reductase (GR), glutathione S-transferase (GST), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were determined in the androgen-response LNCaP and androgen-nonresponsive PC-3 and DU 145 cells as well as in prostatic epithelial cell cultures of benign and malignant human prostatic tissue. There were no differences between the enzyme activities of the human primary cell cultures from cancerous tissue and their normal counterparts. The enzyme activities of the three permanent cell lines were either higher (SOD, catalase, GR) or lower (GST, GPx) than in the primary cell cultures. In LNCaP cells catalase and GR were significantly higher, GST, in contrast, was significantly lower than in PC-3 and DU 145 cells. GST in PC-3 and DU 145 cells, and SOD in all the three cell lines showed no significant differences. Catalase, GPx and GR values were significantly different in the three permanent cell lines. The different enzymatic equipment of the prostate cancer cell lines provides the basis for experimental testing of new concepts of cancer treatment with the help of systematic modulations of the antioxidant defence systems in prostate cancer.[1]References
- Antioxidant enzymes in malignant prostate cell lines and in primary cultured prostatic cells. Jung, K., Seidel, B., Rudolph, B., Lein, M., Cronauer, M.V., Henke, W., Hampel, G., Schnorr, D., Loening, S.A. Free Radic. Biol. Med. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg