Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases.
The paired helical filament, which comprises the major fibrous element of the neurofibrillary lesions of Alzheimer's disease, is composed of hyperphosphorylated microtubule-associated protein tau. Many of the hyperphosphorylated sites in tau are serine/threonine-prolines. Here we show that the stress-activated protein (SAP) kinases SAPK1gamma (also called JNK1), SAPK2a (also called p38, RK, CSBPs, Mpk2 and Mxi2), SAPK2b (also called p38beta), SAPK3 (also called ERK6 and p38gamma) and SAPK4 phosphorylate tau at many serine/threonine-prolines, as assessed by the generation of the epitopes of phosphorylation-dependent anti-tau antibodies. Based on initial rates of phosphorylation, tau was found to be a good substrate for SAPK4 and SAPK3, a reasonable substrate for SAPK2b and a relatively poor substrate for SAPK2a and SAPK1gamma. Phosphorylation of tau by SAPK3 and SAPK4 resulted in a marked reduction in its ability to promote microtubule assembly. These findings double the number of candidate protein kinases for the hyperphosphorylation of tau in Alzheimer's disease and other neurodegenerative disorders.[1]References
- Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. Goedert, M., Hasegawa, M., Jakes, R., Lawler, S., Cuenda, A., Cohen, P. FEBS Lett. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg