The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Iron-regulated excretion of alpha-keto acids by Salmonella typhimurium.

Excretion of alpha-keto acids by clinical isolates and laboratory strains of Salmonella typhimurium was determined by high-performance liquid chromatography analysis of culture supernatants. The levels of excretion increased markedly with increasing iron stress imposed by the presence of alpha,alpha'-dipyridyl or conalbumin in the medium. The major product was pyruvic acid, but significant concentrations of alpha-ketoglutaric acid, alpha-ketoisovaleric acid, and alpha-ketoisocaproic acid were also observed. Maximal excretion occurred at iron stress levels that initially inhibited bacterial growth; the concentration of alpha,alpha'-dipyridyl at which this was observed differed between strains depending on their ability to secrete and utilize siderophores, suggesting that the intracellular iron status was important in determining alpha-keto acid excretion. However, prolonged incubation of the siderophore-deficient S. typhimurium strain enb-7 under conditions of high iron stress resulted in significant delayed bacterial growth, promoted by tonB-dependent uptake of iron complexed with the high accumulated levels of pyruvic acid and other alpha-keto acids. Strain RB181, a fur derivative of enb-7, excreted massive amounts of alpha-keto acids into the culture medium even in the absence of any iron chelators (the concentration of pyruvic acid, for example, was >25 mM). Moreover, RB181 was able to grow and excrete alpha-keto acids in the presence of alpha,alpha'-dipyridyl at concentrations threefold greater than that which inhibited the growth of enb-7.[1]

References

  1. Iron-regulated excretion of alpha-keto acids by Salmonella typhimurium. Reissbrodt, R., Kingsley, R., Rabsch, W., Beer, W., Roberts, M., Williams, P.H. J. Bacteriol. (1997) [Pubmed]
 
WikiGenes - Universities