The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Nutrient deprivation of cultured rat hepatocytes increases the desferrioxamine-available iron pool and augments the sensitivity to hydrogen peroxide.

Primary cultures of rat hepatocytes were subjected to amino acid and serum deprivation for 4 h. This treatment augmented the sensitivity to ensuing hydrogen peroxide exposure for 30 min. The by nutrient deprivation-increased autophagocytosis was confirmed by transmission electron microscopy and uptake of the lysosomotropic weak base acridine orange within the intracellular acidic vacuolar apparatus. The desferrioxamine-available pool of iron increased 2.5-fold during deprivation, compared with control cells. Furthermore, amino acid deprivation increased the cellular protein turnover, measured by radioactive labeling with -3H-Leu. Exposure to 40 microM ascorbic acid specifically decreased the turnover of ferritin, as estimated by enzyme-linked immunosorbent assay, and prevented an increase of the desferrioxamine-available iron pool, resulting in protection against hydrogen peroxide-induced cell killing. Thus, hepatocytes with nutrient deprivation-enhanced autophagocytosis contain a larger pool of catalytically active iron than control cells. This iron pool is mainly derived from the turnover (autophagocytosis) of cytosolic ferritin and is probably situated in the lysosomes. Furthermore, nutrient-deprived cells show augmented sensitivity to hydrogen peroxide-induced oxidative stress, since the enhanced availability of iron in low molecular weight form results in an increased potential of intralysosomal Fenton chemistry, that may cause lysosomal rupture with release of potent hydrolytic enzymes.[1]


WikiGenes - Universities