The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Synthesis and pharmacological characterization of aminocyclopentanetricarboxylic acids: new tools to discriminate between metabotropic glutamate receptor subtypes.

The four stereoisomers of 1-aminocyclopentane-1,3,4-tricarboxylic acid ¿ACPT-I (18) and -II (19), (3R, 4R)-III [(-)-20], and (3S,4S)-III [(+)-20]¿ have been synthesized and evaluated for their effects at glutamate receptors subtypes. ACPTs are ACPD analogues in which a third carboxylic group has been added at position 4 in the cyclopentane ring. None of the ACPT isomers showed a significant effect on ionotropic NMDA, KA, and AMPA receptors. On the other hand, ACPT-II (19) was found to be a general competitive antagonist for metabotropic receptors (mGluRs) and exhibited a similar affinity for mGluR1a (KB = 115 +/- 2 microM), mGluR2 (KB = 88 +/- 21 microM), and mGluR4a (KB = 77 +/- 9 microM), the representative members of group I, II and III mGluRs, respectively. Two other isomers, ACPT-I (18) and (+)-(3S,4S)-ACPT-III [(+)-20], were potent agonists at the group III receptor mGluR4a (EC50 = 7.2 +/- 2.3 and 8.8 +/- 3.2 microM) and competitive antagonists with low affinity for mGluR1a and mGluR2 (KB > 300 microM). Finally, (-)-(3R,4R)-ACPT-III [(-)-20] was a competitive antagonist with poor but significant affinity for mGluR4a (KB = 220 microM). These results demonstrate that the addition of a third carboxylic group to ACPD can change its activity (from agonist to antagonist) and either increase or decrease its selectivity and/or affinity for the various mGluR subtypes.[1]


WikiGenes - Universities