The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

cyclopentane     cyclopentane

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of cyclopentane


Psychiatry related information on cyclopentane


High impact information on cyclopentane

  • These results strongly support the concept that PGs are involved in the regulation of cell proliferation, and that PGs containing a reactive alpha, beta-unsaturated carbonyl group in the cyclopentane ring are potential antineoplastic agents [7].
  • To clarify the base pairing and coding potential of this major DNA lesion with the aim to estimate its mutagenic effect, we prepared oligonucleotides containing a cyclopentane based analogue of the DNA lesion (cFaPydG) [8].
  • Solvent-controlled diastereoselective synthesis of cyclopentane derivatives by a [3 + 2] cyclization reaction of alpha,beta-disubstituted (alkenyl)(methoxy)carbene complexes with methyl ketone lithium enolates [9].
  • These lipids are quite different from the usual fatty acid lipids of eukaryotes and prokaryotes: each molecule consists of two C40 omega-omega' biphytanyl residues (with 0 to 4 cyclopentane groups per residue), ether linked at both ends to two (variably substituted) glycerol or nonitol groups [10].
  • The alpha- and omega-chains of BMP are involved in H-bonding with protein residues, while the cyclopentane moiety is surrounded by water molecules and is not directly attached to either the protein or the bound NADPH, indicating that the cyclopentane moiety is movable in the active site [11].

Chemical compound and disease context of cyclopentane


Biological context of cyclopentane

  • The mutagenic activities exhibited by cyclopenta[c]phenanthrenes are compared with those shown by the related cyclopenta[a]phenanthrenes and then discussed with respect to the effect of the cyclopentane ring facing the bay region [14].
  • The inability of the less polar (cyclopentane carboxylic acid) analogs to inhibit ovulation could be explained, at least partially, in terms of impaired absorption sc [15].
  • This prevents the dense packing characteristic for the cyclopentane ring-containing GDGTs membrane lipids used by hyperthermophilic crenarchaeota to adjust their membrane fluidity to high temperatures [16].
  • For n-pentane, cyclopentane and, to a lesser extent methoxyflurane, the stimulus often declined to such low values that the axon exhibited spontaneous action potentials which persisted until the anaesthetic was removed [17].
  • They include representatives of the three classes of anaesthetics examined in previous studies on the sodium current (Haydon & Urban, 1983a, b, c), i.e. the non-polar molecules n-pentane, cyclopentane and CCl4, several n-alkanols and the inhalation anaesthetics chloroform, halothane, diethyl ether and methoxyflurane [18].

Anatomical context of cyclopentane


Associations of cyclopentane with other chemical compounds


Gene context of cyclopentane


Analytical, diagnostic and therapeutic context of cyclopentane

  • Combined gas chromatography/negative-ion chemical ionization mass spectrometry analysis revealed for all three compounds the incorporation of one oxygen atom which according to the electron impact fragmentation pattern had to be introduced either at the 9-methylene group or at the cyclopentane ring [33].
  • Cyanohydrin glycosides of Passiflora: distribution pattern, a saturated cyclopentane derivative from P. guatemalensis, and formation of pseudocyanogenic alpha-hydroxyamides as isolation artefacts [34].


  1. Inhibition of human malignant melanoma colony-forming cells in vitro by prostaglandin A1. Bregman, M.D., Meyskens, F.L. Cancer Res. (1983) [Pubmed]
  2. 2-Cyclopenten-1-one, a new inducer of heat shock protein 70 with antiviral activity. Rossi, A., Elia, G., Santoro, M.G. J. Biol. Chem. (1996) [Pubmed]
  3. Oral administration of cyclopentane neuraminidase inhibitors protects ferrets against influenza virus infection. Sweet, C., Jakeman, K.J., Bush, K., Wagaman, P.C., McKown, L.A., Streeter, A.J., Desai-Krieger, D., Chand, P., Babu, Y.S. Antimicrob. Agents Chemother. (2002) [Pubmed]
  4. Cardioprotective effects of the novel adenosine A1/A2 receptor agonist AMP 579 in a porcine model of myocardial infarction. Smits, G.J., McVey, M., Cox, B.F., Perrone, M.H., Clark, K.L. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
  5. Composite hopanoid biosynthesis in Zymomonas mobilis: N-acetyl-D-glucosamine as precursor for the cyclopentane ring linked to bacteriohopanetetrol. Vincent, S.P., Sinaÿ, P., Rohmer, M. Chem. Commun. (Camb.) (2003) [Pubmed]
  6. Novel 1-phenylcycloalkanecarboxylic acid derivatives as potential anticonvulsant agents. Calderon, S.N., Newman, A.H., Tortella, F.C. J. Med. Chem. (1991) [Pubmed]
  7. Modulation of the growth of a human erythroleukemic cell line (K562) by prostaglandins: antiproliferative action of prostaglandin A. Santoro, M.G., Crisari, A., Benedetto, A., Amici, C. Cancer Res. (1986) [Pubmed]
  8. Base pairing and replicative processing of the formamidopyrimidine-dG DNA lesion. Ober, M., Müller, H., Pieck, C., Gierlich, J., Carell, T. J. Am. Chem. Soc. (2005) [Pubmed]
  9. Solvent-controlled diastereoselective synthesis of cyclopentane derivatives by a [3 + 2] cyclization reaction of alpha,beta-disubstituted (alkenyl)(methoxy)carbene complexes with methyl ketone lithium enolates. Barluenga, J., Alonso, J., Fañanás, F.J. J. Am. Chem. Soc. (2003) [Pubmed]
  10. Structure and polymorphism of bipolar isopranyl ether lipids from archaebacteria. Gulik, A., Luzzati, V., De Rosa, M., Gambacorta, A. J. Mol. Biol. (1985) [Pubmed]
  11. Prostaglandin F2alpha formation from prostaglandin H2 by prostaglandin F synthase (PGFS): crystal structure of PGFS containing bimatoprost. Komoto, J., Yamada, T., Watanabe, K., Woodward, D.F., Takusagawa, F. Biochemistry (2006) [Pubmed]
  12. In vivo influenza virus-inhibitory effects of the cyclopentane neuraminidase inhibitor RJW-270201. Sidwell, R.W., Smee, D.F., Huffman, J.H., Barnard, D.L., Bailey, K.W., Morrey, J.D., Babu, Y.S. Antimicrob. Agents Chemother. (2001) [Pubmed]
  13. Interference with HIV-1 reverse transcriptase-catalyzed DNA chain elongation by the 5'-triphosphate of the carbocyclic analog of 2'-deoxyguanosine. Parker, W.B., White, E.L., Shaddix, S.C., Ross, L.J., Shannon, W.M., Secrist, J.A. Antiviral Res. (1992) [Pubmed]
  14. Synthesis and mutagenicity of some cyclopenta[c]phenanthrenes and indeno[c]phenanthrenes. Marrocchi, A., Minuti, L., Morozzi, G., Pampanella, L., Taticchi, A. Carcinogenesis (1996) [Pubmed]
  15. On the inhibitory effects of luteinizing hormone-releasing hormone analogs. Bowers, C.Y., Humphries, J., Wasiak, T., Folkers, K., Reynolds, G.A., Reichert, L.E. Endocrinology (1980) [Pubmed]
  16. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. Damsté, J.S., Schouten, S., Hopmans, E.C., van Duin, A.C., Geenevasen, J.A. J. Lipid Res. (2002) [Pubmed]
  17. Excitation of the squid giant axon by general anaesthetics. Haydon, D.A., Simon, A.J. J. Physiol. (Lond.) (1988) [Pubmed]
  18. The actions of some general anaesthetics on the potassium current of the squid giant axon. Haydon, D.A., Urban, B.W. J. Physiol. (Lond.) (1986) [Pubmed]
  19. Synthesis and protein kinase C inhibitory activities of acyclic balanol analogs that are highly selective for protein kinase C over protein kinase A. Defauw, J.M., Murphy, M.M., Jagdmann, G.E., Hu, H., Lampe, J.W., Hollinshead, S.P., Mitchell, T.J., Crane, H.M., Heerding, J.M., Mendoza, J.S., Davis, J.E., Darges, J.W., Hubbard, F.R., Hall, S.E. J. Med. Chem. (1996) [Pubmed]
  20. Group 1 metabotropic glutamate receptors contribute to slow-onset potentiation in the rat CA1 region in vivo. Manahan-Vaughan, D., Reymann, K.G. Neuropharmacology (1997) [Pubmed]
  21. Molecular modeling of archaebacterial bipolar tetraether lipid membranes. Gabriel, J.L., Chong, P.L. Chem. Phys. Lipids (2000) [Pubmed]
  22. Interfacial air/water proton conduction from long distances by sulfolobus solfataricus archaeal bolaform lipids. Vilalta, I., Gliozzi, A., Prats, M. Eur. J. Biochem. (1996) [Pubmed]
  23. Synthesis and SAR of 1,2-trans-(1-hydroxy-3-phenylprop-1-yl)cyclopentane carboxamide derivatives, a new class of sodium channel blockers. Ok, D., Li, C., Abbadie, C., Felix, J.P., Fisher, M.H., Garcia, M.L., Kaczorowski, G.J., Lyons, K.A., Martin, W.J., Priest, B.T., Smith, M.M., Williams, B.S., Wyvratt, M.J., Parsons, W.H. Bioorg. Med. Chem. Lett. (2006) [Pubmed]
  24. On ring carbomers of cyclobutane, cyclopentane, and cyclodecane and cyclization reactions through bis(alkynyl-propargyl) coupling. Maurette, L., Godard, C., Frau, S., Lepetit, C., Soleilhavoup, M., Chauvin, R. Chemistry (Weinheim an der Bergstrasse, Germany) (2001) [Pubmed]
  25. Synthesis and pharmacological characterization of aminocyclopentanetricarboxylic acids: new tools to discriminate between metabotropic glutamate receptor subtypes. Acher, F.C., Tellier, F.J., Azerad, R., Brabet, I.N., Fagni, L., Pin, J.P. J. Med. Chem. (1997) [Pubmed]
  26. Efficient oxidative radical cyclizations of ester enolates with carbocation desilylation as termination: synthesis of cyclopentanoid monoterpenes and analogues. Jahn, U., Hartmann, P., Kaasalainen, E. Org. Lett. (2004) [Pubmed]
  27. Stimulation of Ca(2+)-activated non-specific cationic channels by phospholipase C-linked glutamate receptors in synaptoneurosomes? Vignes, M., Blanc, E., Récasens, M. Eur. J. Neurosci. (1995) [Pubmed]
  28. Unexpected synthesis of conformationally restricted analogues of gamma-amino butyric acid (GABA): mechanism elucidation by electrospray ionization mass spectrometry. Ferraz, H.M., Pereira, F.L., Gonçalo, E.R., Santos, L.S., Eberlin, M.N. J. Org. Chem. (2005) [Pubmed]
  29. Stereospecific synthesis of 5-substituted 2-bisarylthiocyclopentane carboxylic acids as specific matrix metalloproteinase inhibitors. Le Diguarher, T., Chollet, A.M., Bertrand, M., Hennig, P., Raimbaud, E., Sabatini, M., Guilbaud, N., Pierré, A., Tucker, G.C., Casara, P. J. Med. Chem. (2003) [Pubmed]
  30. Syntheses and neuraminidase inhibitory activity of multisubstituted cyclopentane amide derivatives. Chand, P., Babu, Y.S., Bantia, S., Rowland, S., Dehghani, A., Kotian, P.L., Hutchison, T.L., Ali, S., Brouillette, W., El-Kattan, Y., Lin, T.H. J. Med. Chem. (2004) [Pubmed]
  31. Cyclopentane neuraminidase inhibitors with potent in vitro anti-influenza virus activities. Smee, D.F., Huffman, J.H., Morrison, A.C., Barnard, D.L., Sidwell, R.W. Antimicrob. Agents Chemother. (2001) [Pubmed]
  32. Enantioselective strategy to the spirocyclic core of Palau'amine and related bisguanidine marine alkaloids. Dilley, A.S., Romo, D. Org. Lett. (2001) [Pubmed]
  33. Thromboxane synthase catalyses hydroxylations of prostaglandin H2 analogs in the presence of iodosylbenzene. Hecker, M., Baader, W.J., Weber, P., Ullrich, V. Eur. J. Biochem. (1987) [Pubmed]
  34. Cyanohydrin glycosides of Passiflora: distribution pattern, a saturated cyclopentane derivative from P. guatemalensis, and formation of pseudocyanogenic alpha-hydroxyamides as isolation artefacts. Jaroszewski, J.W., Olafsdottir, E.S., Wellendorph, P., Christensen, J., Franzyk, H., Somanadhan, B., Budnik, B.A., Jørgensen, L.B., Clausen, V. Phytochemistry (2002) [Pubmed]
WikiGenes - Universities