Prevention of methacholine-induced changes in respiratory mechanics in piglets: a comparison of sevoflurane and halothane.
BACKGROUND: Sevoflurane is a new volatile anesthetic agent that may be a useful alternative to halothane for anesthesia in children. However, there is insufficient information about its effects on respiratory mechanics, particularly in the presence of constrictor stimuli. METHODS: Eighteen piglets had anesthesia induced and maintained with either pentobarbital (control: n = 8), 1 minimum alveolar concentration (MAC) sevoflurane (sevo: n = 5), or 1 MAC halothane (halo: n = 5). Pressure, flow, and volume were measured at the airway opening and used to calculate lung compliance (C(L)) and resistance (R(L)). Resistance was partitioned into airway (Raw) and parenchymal (Vti) components using alveolar pressure. Methacholine was infused intravenously in a dose sufficient (15 microg x kg(-1) x h(-1)) to approximately double R(L). RESULTS: The increase in R(L) seen in the control group was almost entirely due to an increase in Vti. Sevoflurane and halothane prevented the increase in R(L) and Vti (both P < 0.02) and the decrease in C(L) (both P < 0.02). CONCLUSIONS: Sevoflurane and halothane can prevent methacholine-induced changes in lung function.[1]References
- Prevention of methacholine-induced changes in respiratory mechanics in piglets: a comparison of sevoflurane and halothane. Habre, W., Wildhaber, J.H., Sly, P.D. Anesthesiology (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg