The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase--involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway.

Squalene synthase (SQS) catalyzes the first committed step of the sterol biosynthetic pathway. A full-length Arabidopsis thaliana SQS cDNA has been isolated by combining library screening and PCR-based approaches. Arabidopsis SQS is encoded by a small gene family of two genes (SQS1 and SQS2) which are organized in a tandem array. SQS1 and SQS2 have an identical organization with regard to intron positions and exon sizes and encode SQS isoforms showing a high level of sequence conservation (79% identity and 88% similarity). The isolated cDNA has been assigned to the SQS1 gene product, SQS1. RNA blot analysis has shown that the 1.6-kb SQS1 mRNA is detected in all plant tissues analyzed (inflorescenses, leaves, stems and roots) although the transcript is especially abundant in roots. Arabidopsis SQS1 isoform is unable to complement the SQS-defective Saccharomyces cerevisiae strain 5302, although SQS activity was detected in the microsomal fraction of the transformed yeast strain. However, a chimeric SQS resulting from the replacement of the 66 C-terminal residues of the Arabidopsis enzyme by the 111 C-terminal residues of the Schizosaccharomyces pombe enzyme was able to confer ergosterol prototrophy to strain 5302. Labeling studies using [3H]farnesyl-P2 and microsomal fractions obtained from yeast strains expressing either Arabidopsis SQS1 or chimeric Arabidopsis/S. pombe SQS derivatives indicated that the C-terminal region of the enzyme is involved in the channeling of squalene through the yeast sterol pathway.[1]

References

  1. Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase--involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. Kribii, R., Arró, M., Del Arco, A., González, V., Balcells, L., Delourme, D., Ferrer, A., Karst, F., Boronat, A. Eur. J. Biochem. (1997) [Pubmed]
 
WikiGenes - Universities