The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

squalene     2,6,10,15,19,23- hexamethyltetracosa-2,6,10...

Synonyms: AGN-PC-00EZ64, ACMC-20997z, ANW-16221, AC1L1AQK, CTK3J0452, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of squalene

 

Psychiatry related information on squalene

  • Squalene was detected from 1/4 m greater than the standard tick attractants, attracted a greater percentage of ticks (75 compared with 0-43%) and featured a rapid response time (< 30 min) [6].
 

High impact information on squalene

 

Chemical compound and disease context of squalene

 

Biological context of squalene

 

Anatomical context of squalene

 

Associations of squalene with other chemical compounds

 

Gene context of squalene

  • Chromosomal integration of ERG1 ERG7 at their loci in erg26-1ts ets1-1 and erg26-1ts and ets2-1 mutants, respectively, results in the loss of accumulation of squalene and squalene epoxide, re-accumulation of 4-carboxysterols and cell inviability at high temperature [28].
  • Dolichol formation is examined in three Saccharomyces cerevisiae strains with mutations in the ERG20 gene encoding farnesyl diphosphate synthase (mevalonic acid pathway) and/or the ERG9 gene encoding squalene synthase (sterol synthesis pathway) differing in the amount and chain length of the polyisoprenoids synthesized [29].
  • Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase--involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway [30].
  • Analysis by high-performance thin-layer chromatography (HPTLC) of (14)C-acetate-labeled lipids showed a dose-dependent increase in synthesis of sebaceous-specific lipid (i.e., squalene) induced by NDP alpha-MSH [31].
  • Squalene synthase (SS) catalyzes the reductive head-to-head condensation of two molecules of farnesyl diphosphate to form squalene, the first specific intermediate in the cholesterol biosynthetic pathway [32].
 

Analytical, diagnostic and therapeutic context of squalene

References

  1. Cloning, expression, and characterization of cDNAs encoding Arabidopsis thaliana squalene synthase. Nakashima, T., Inoue, T., Oka, A., Nishino, T., Osumi, T., Hata, S. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  2. Increased 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol biosynthesis in freshly isolated hairy cell leukemia cells. Yachnin, S., Mannickarottu, V. Blood (1984) [Pubmed]
  3. Killing of tumor cells in vitro by macrophages from mice given injections of squalene-treated cell wall skeleton of Nocardia rubra. Ito, M., Iizuka, H., Masuno, T., Yasunami, R., Ogura, T., Yamamura, Y., Azuma, I. Cancer Res. (1981) [Pubmed]
  4. Tumor regression after intralesional injection of mycobacterial components emulsified in 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene (squalene), 2,6,10,15,19,23-hexamethyltetracosane (squalane), peanut oil, or mineral oil. Yarkoni, E., Rapp, H.J. Cancer Res. (1979) [Pubmed]
  5. Cholesterol synthesis inhibition distal to squalene upregulates biliary phospholipid secretion and counteracts cholelithiasis in the genetically prone C57L/J mouse. Clarke, G.A., Bouchard, G., Paigen, B., Carey, M.C. Gut (2004) [Pubmed]
  6. Squalene: a naturally abundant mammalian skin secretion and long distance tick-attractant (Acari: Ixodidae). Yoder, J.A., Stevens, B.W., Crouch, K.C. J. Med. Entomol. (1999) [Pubmed]
  7. Structure and function of a squalene cyclase. Wendt, K.U., Poralla, K., Schulz, G.E. Science (1997) [Pubmed]
  8. Lipid composition of bile and gallbladder mucosa in patients with acalculous cholesterolosis. Tilvis, R.S., Aro, J., Strandberg, T.E., Lempinen, M., Miettinen, T.A. Gastroenterology (1982) [Pubmed]
  9. Discovery, biosynthesis, and mechanism of action of the zaragozic acids: potent inhibitors of squalene synthase. Bergstrom, J.D., Dufresne, C., Bills, G.F., Nallin-Omstead, M., Byrne, K. Annu. Rev. Microbiol. (1995) [Pubmed]
  10. Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Pearson, A., Budin, M., Brocks, J.J. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  11. Chrysanthemyl diphosphate synthase: isolation of the gene and characterization of the recombinant non-head-to-tail monoterpene synthase from Chrysanthemum cinerariaefolium. Rivera, S.B., Swedlund, B.D., King, G.J., Bell, R.N., Hussey, C.E., Shattuck-Eidens, D.M., Wrobel, W.M., Peiser, G.D., Poulter, C.D. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  12. Protective antiviral immune responses to pseudorabies virus induced by DNA vaccination using dimethyldioctadecylammonium bromide as an adjuvant. van Rooij, E.M., Glansbeek, H.L., Hilgers, L.A., te Lintelo, E.G., de Visser, Y.E., Boersma, W.J., Haagmans, B.L., Bianchi, A.T. J. Virol. (2002) [Pubmed]
  13. Squalene epoxidase as hypocholesterolemic drug target revisited. Chugh, A., Ray, A., Gupta, J.B. Prog. Lipid Res. (2003) [Pubmed]
  14. Pravastatin inhibited the cholesterol synthesis in human hepatoma cell line Hep G2 less than simvastatin and lovastatin, which is reflected in the upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase and squalene synthase. Cohen, L.H., van Vliet, A., Roodenburg, L., Jansen, L.M., Griffioen, M. Biochem. Pharmacol. (1993) [Pubmed]
  15. In vitro cytoprotective activity of squalene on a bone marrow versus neuroblastoma model of cisplatin-induced toxicity. implications in cancer chemotherapy. Das, B., Yeger, H., Baruchel, H., Freedman, M.H., Koren, G., Baruchel, S. Eur. J. Cancer (2003) [Pubmed]
  16. Molecular cloning, characterization, and functional expression of rat oxidosqualene cyclase cDNA. Abe, I., Prestwich, G.D. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  17. Measurement of cholesterol synthesis in man by isotope kinetics of squalene. Liu, G.C., Ahrens, E.H., Schreibman, P.H., Samuel, P., McNamara, D.J., Crouse, J.R. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  18. 3-Hydroxy-3-methylglutaryl coenzyme a reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture. Guijarro, C., Blanco-Colio, L.M., Ortego, M., Alonso, C., Ortiz, A., Plaza, J.J., Díaz, C., Hernández, G., Egido, J. Circ. Res. (1998) [Pubmed]
  19. Rats made congenic for Oia3 on chromosome 10 become susceptible to squalene-induced arthritis. Holm, B.C., Xu, H.W., Jacobsson, L., Larsson, A., Luthman, H., Lorentzen, J.C. Hum. Mol. Genet. (2001) [Pubmed]
  20. Chloroquine inhibits cyclization of squalene oxide to lanosterol in mammalian cells. Chen, H.W., Leonard, D.A. J. Biol. Chem. (1984) [Pubmed]
  21. Metabolism of squalene in human fat cells. Demonstration of a two-pool system. Tilvis, R., Kovanen, P.T., Miettinen, T.A. J. Biol. Chem. (1982) [Pubmed]
  22. Subcellular localization of squalene synthase in rat hepatic cells. Biochemical and immunochemical evidence. Stamellos, K.D., Shackelford, J.E., Shechter, I., Jiang, G., Conrad, D., Keller, G.A., Krisans, S.K. J. Biol. Chem. (1993) [Pubmed]
  23. Isolation and partial characterization of a cholesterol-requiring mutant of Chinese hamster ovary cells. Chang, T.Y., Telakowski, C., Heuvel, W.V., Alberts, A.W., Vagelos, P.R. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  24. Selective repression of low-density lipoprotein receptor expression by SP600125: coupling of histone H3-Ser10 phosphorylation and Sp1 occupancy. Huang, W., Batra, S., Korrapati, S., Mishra, V., Mehta, K.D. Mol. Cell. Biol. (2006) [Pubmed]
  25. Conservation between human and fungal squalene synthetases: similarities in structure, function, and regulation. Robinson, G.W., Tsay, Y.H., Kienzle, B.K., Smith-Monroy, C.A., Bishop, R.W. Mol. Cell. Biol. (1993) [Pubmed]
  26. Serum and hepatic cholestanol, squalene and noncholesterol sterols in man: a study on liver transplantation. Nikkilä, K., Höckerstedt, K., Miettinen, T.A. Hepatology (1992) [Pubmed]
  27. Squalestatin 1, a potent inhibitor of squalene synthase, which lowers serum cholesterol in vivo. Baxter, A., Fitzgerald, B.J., Hutson, J.L., McCarthy, A.D., Motteram, J.M., Ross, B.C., Sapra, M., Snowden, M.A., Watson, N.S., Williams, R.J. J. Biol. Chem. (1992) [Pubmed]
  28. Characterizing sterol defect suppressors uncovers a novel transcriptional signaling pathway regulating zymosterol biosynthesis. Germann, M., Gallo, C., Donahue, T., Shirzadi, R., Stukey, J., Lang, S., Ruckenstuhl, C., Oliaro-Bosso, S., McDonough, V., Turnowsky, F., Balliano, G., Nickels, J.T. J. Biol. Chem. (2005) [Pubmed]
  29. Interplay between the cis-prenyltransferases and polyprenol reductase in the yeast Saccharomyces cerevisiae. Szkopinska, A., Swiezewska, E., Rytka, J. Biochimie (2006) [Pubmed]
  30. Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase--involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. Kribii, R., Arró, M., Del Arco, A., González, V., Balcells, L., Delourme, D., Ferrer, A., Karst, F., Boronat, A. Eur. J. Biochem. (1997) [Pubmed]
  31. Proopiomelanocortin peptides and sebogenesis. Zhang, L., Anthonavage, M., Huang, Q., Li, W.H., Eisinger, M. Ann. N. Y. Acad. Sci. (2003) [Pubmed]
  32. Embryonic lethality and defective neural tube closure in mice lacking squalene synthase. Tozawa, R., Ishibashi, S., Osuga, J., Yagyu, H., Oka, T., Chen, Z., Ohashi, K., Perrey, S., Shionoiri, F., Yahagi, N., Harada, K., Gotoda, T., Yazaki, Y., Yamada, N. J. Biol. Chem. (1999) [Pubmed]
  33. Role of the kidneys in the metabolism of plasma mevalonate. Studies in humans and in rhesus monkeys. McNamara, D.J., Ahrens, E.H., Parker, T.S., Morrissey, K. J. Clin. Invest. (1985) [Pubmed]
  34. Enhancement of cholesterol and cholesteryl ester accumulation in re-endothelialized aorta. Falcone, D.J., Hajjar, D.P., Minick, C.R. Am. J. Pathol. (1980) [Pubmed]
 
WikiGenes - Universities