Characterization of a gene encoding dihydrolipoamide dehydrogenase of the cyanobacterium Synechocystis sp. strain PCC 6803.
The authors previously reported the isolation and partial characterization of a periplasmically located dihydrolipoamide dehydrogenase (LPD) from the cyanobacterium Synechocystis sp. strain PCC 6803. In the present work the gene (lpdA; database accession number Z48564) encoding the apoprotein of this LPD in Synechocystis PCC 6803 has been identified, sequenced and analysed. The lpdA gene codes for a protein starting with methionine, which is post-translationally removed. The mature protein contains an N-terminal serine and consists of 473 amino acids with a deduced molecular mass of 51421 Da (including one FAD). The LPD is an acidic protein with a calculated isoelectric point of 5.17. Comparison of the amino acid sequence of the Synechocystis LPD with protein sequences in the databases revealed that the enzyme shares identities of 31-35% with all 18 LPDs so far sequenced and published. As a first step in determining the role of this cyanobacterial LPD, attempts were made to generate an LPD-free Synechocystis mutant by insertionally inactivating the lpdA gene with a kanamycin-resistance cassette. However, the selected transformants appeared to be heteroallelic, containing both the intact lpdA gene and the lpdA gene inactivated by the drug-resistance cassette. The heteroallelic mutant studied, which had about 50% of the wild-type LPD activity, caused acidification of the growth medium. Growth over a prolonged time was only possible after an increased buffering of the medium. Since it is reported in the literature that inactivation of the pyruvate dehydrogenase complex (PDC) leads to acidosis, a function of the LPD in a cytoplasmic-membrane-associated PDC is conceivable.[1]References
- Characterization of a gene encoding dihydrolipoamide dehydrogenase of the cyanobacterium Synechocystis sp. strain PCC 6803. Engels, A., Pistorius, E.K. Microbiology (Reading, Engl.) (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg