The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The attenuation of kainate-induced neurotoxicity by chlormethiazole and its enhancement by dizocilpine, muscimol, and adenosine receptor agonists.

Systemically administered kainate (10 mg.kg-1) caused neuronal loss in both the hippocampus and the entorhinal regions of the rat brain. This resulted in a loss of 68.3 +/- 13.8 and 53.3 +/- 12.8% of pyramidal neurones in the hippocampal CA1 and CA3a regions, respectively. Chlormethiazole attenuated the loss of neurones in the hippocampal cell layers CA1 (cell loss 10 +/- 3.2%) and CA3a (cell loss 10 +/- 7.7%). The neuroprotective activity of chlormethiazole was apparent in the presence or absence of a low dose of clonazepam (200 micrograms.kg-1 i.p.). The kainate-induced damage could also be measured by the increase in binding of the peripheral benzodiazepine ligand ([3H]PK11195) in the hippocampus. In kainate-treated rats there was a 350-500% increase in binding indicative of reactive gliosis. Chlormethiazole prevented this elevation in a dose- and time-dependent manner, with an ED50 of 10.64 mg.kg-1 and an effective therapeutic window from 1 to 4 h posttreatment. Dizocilpine also attenuated damage significantly. The GABAA agonist muscimol was also able to attenuate the increase in [3H]PK11195 binding in a dose-dependent manner, with an ED50 of approximately 0.1 mg.kg-1. If muscimol, dizocilpine, or the adenosine A1 receptor agonist R-N6-phenylisopropyl-adenosine were administered together with chlormethiazole at their respective ED25 doses, a potentiation was apparent in the degree of neuroprotection. It is concluded that the combination of neuroprotective agents with different mechanisms of action can lead to a synergistic protection against excitotoxicity.[1]

References

 
WikiGenes - Universities