The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Human tissue factor pathway inhibitor fused to CD4 binds both FXa and TF/FVIIa at the cell surface.

Tissue factor pathway inhibitor ( TFPI) is one of the main regulators of the tissue factor ( TF) pathway of coagulation. To tether human TFPI to the cell surface, full length or truncated TFPI lacking the third Kunitz domain were fused with domains three and four and the carboxy-terminal sequence of human CD4. Constructs were transfected into a mouse fibroblast cell line and individual clones were checked for expression using monoclonal antibodies directed against the first two TFPI Kunitz domains and against CD4. Specific human FXa binding was detected by flow cytometry using an anti-FX polyclonal antibody, and inhibition of FXa proteolytic activity was verified by chromogenic substrate assay using S-2765. In addition, TFPI-CD4-expressing cells, preincubated with FXa, specifically bound human TF-FVIIa complexes as revealed with an anti-human TF polyclonal antibody. No functional difference was observed between full length or truncated TFPI-CD4. These results demonstrate that functionally intact TFPI can be tethered to the cell surface. Genetic manipulation of, for example, endothelial cells leading to the stable expression of TFPI may inhibit the development of coronary artery heart disease following cardiac allotransplantation, and may inhibit thrombosis in the context of xenotransplantation.[1]


  1. Human tissue factor pathway inhibitor fused to CD4 binds both FXa and TF/FVIIa at the cell surface. Riesbeck, K., Dorling, A., Kemball-Cook, G., McVey, J.H., Jones, M., Tuddenham, E.G., Lechler, R.I. Thromb. Haemost. (1997) [Pubmed]
WikiGenes - Universities