Expression of tetra-spans transmembrane family (CD9, CD37, CD53, CD63, CD81 and CD82) in normal and neoplastic human keratinocytes: an association of CD9 with alpha 3 beta 1 integrin.
Tetra-spans transmembrane family (TSTF) members (CD9, CD37, CD53, CD63, CD81 and CD82) have potent effects on cell growth, motility and adhesion in various cells. However, little is known about their expression in human skin. Using immunohistological techniques, we have studied the localization of all six members of TSTF in normal and carcinomatous human keratinocytes. CD9, CD81 and CD82 were expressed in the entire living layers of the epidermis. Their staining pattern was quite similar, and was mainly intercellular with occasional intracellular immunoreactivity. CD53 expression was confined to the intercellular spaces of the upper spinous or granular layer in the normal epidermis. No clear-cut expression of CD63 could be detected in the epidermis. CD37 was not detected at all. Cultured human keratinocytes also expressed CD9, CD81 and CD82 at the surface membrane of cell-cell boundaries. Expression of CD37 and CD53 was negative in cultured keratinocytes, while CD63 was clearly localized in the cytoplasmic lysosomes. An immunoprecipitation assay revealed that alpha 3 beta 1 integrin is molecularly associated with CD9. The expression of CD9, CD81 and CD82 was markedly down-regulated in basal cell carcinoma but not in Bowen's disease. The abundant and differential expression of TSTF molecules and the selective association of CD9 with alpha 3 beta 1 integrin suggest that the TSTF molecules may be involved in the regulation of epidermal differentiation and integrity in vivo.[1]References
- Expression of tetra-spans transmembrane family (CD9, CD37, CD53, CD63, CD81 and CD82) in normal and neoplastic human keratinocytes: an association of CD9 with alpha 3 beta 1 integrin. Okochi, H., Kato, M., Nashiro, K., Yoshie, O., Miyazono, K., Furue, M. Br. J. Dermatol. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg