The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

CD37  -  CD37 molecule

Homo sapiens

Synonyms: GP52-40, Leukocyte antigen CD37, TSPAN26, Tetraspanin-26, Tspan-26
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CD37


High impact information on CD37

  • These target antigen restriction was not observed with mononuclear effector cells, which mediated cytotoxicity with antibodies to HLA class II, but also with mouse/human chimeric constructs to CD19, CD37, and CD38 [4].
  • BglII restriction fragment length polymorphism at the gene locus coding for the leukocyte surface antigen CD37 [5].
  • Simultaneous expression of B-cell (CD19+, CD20+, CD23+, CD37+) and T-cell (CD2+, CD3+/-, CD7+, CD43+) antigens, activation antigens (CD30+, CDw70+) as well as CD68+, a macrophage-associated antigen, was observed on the cell line and its source [6].
  • TAPA-1 showed strong homology with the CD37 leukocyte antigen and with the ME491 melanoma-associated antigen, both of which have been implicated in the regulation of cell growth [7].
  • In vitro studies measuring inhibition of [3H]leucine uptake by cultured Daudi and Raji cells demonstrated that, despite all BsAb capturing saporin on the cell surface, BsAb targeting through CD22 were far more cytotoxic than those functioning via CD19, CD37, or surface immunoglobulin [2].

Biological context of CD37


Anatomical context of CD37


Associations of CD37 with chemical compounds


Other interactions of CD37

  • Participation of other molecules, not examined in this study (CD19 and CD37), in these supramolecular structures cannot be ruled out [17].
  • However, these cells expressed neither CD28, a molecule acquired by plasmocytes, nor CD22 and CD37, which are lost during the transition of plasmablasts to plasmocytes [18].
  • In the presence of CD28 costimulation, CD37 engagement still significantly reduced proliferation [8].
  • In type I cells MHC Class II and the pan B antigens CD19 and CD37 were expressed at levels typical of cells at the B cell stage [19].
  • However, CD40 and CD37 were found on the majority of CD34+ cells from either BM or CB, demonstrating that these antigens are not restricted to B-lineage CD34+ cells [20].


  1. Expression of the neuroglandular antigen and analogues in melanoma. CD9 expression appears inversely related to metastatic potential of melanoma. Si, Z., Hersey, P. Int. J. Cancer (1993) [Pubmed]
  2. Delivery of saporin to human B-cell lymphoma using bispecific antibody: targeting via CD22 but not CD19, CD37, or immunoglobulin results in efficient killing. Bonardi, M.A., French, R.R., Amlot, P., Gromo, G., Modena, D., Glennie, M.J. Cancer Res. (1993) [Pubmed]
  3. Molecular detection of Spanish deltabeta-thalassemia associated with beta-thalassemia identified during prenatal diagnosis. Barragan, E., Bolufer, P., Perez, M.L., Prieto, F., Sanz, M.A. Clin. Chim. Acta (2006) [Pubmed]
  4. HLA class II as potential target antigen on malignant B cells for therapy with bispecific antibodies in combination with granulocyte colony-stimulating factor. Elsässer, D., Valerius, T., Repp, R., Weiner, G.J., Deo, Y., Kalden, J.R., van de Winkel, J.G., Stevenson, G.T., Glennie, M.J., Gramatzki, M. Blood (1996) [Pubmed]
  5. BglII restriction fragment length polymorphism at the gene locus coding for the leukocyte surface antigen CD37. Virtaneva, K.I., Nevanlinna, H., Schröder, J. Hum. Mol. Genet. (1993) [Pubmed]
  6. A novel human lymphoma cell line (Deglis) with dual B/T phenotype and gene rearrangements and containing Epstein-Barr virus genomes. al Saati, T., Delécluze, H.J., Chittal, S., Brousset, P., Magaud, J.P., Dastugue, N., Cohen-Knafo, E., Laurent, G., Rubin, B., Delsol, G. Blood (1992) [Pubmed]
  7. TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Oren, R., Takahashi, S., Doss, C., Levy, R., Levy, S. Mol. Cell. Biol. (1990) [Pubmed]
  8. A regulatory role for CD37 in T cell proliferation. van Spriel, A.B., Puls, K.L., Sofi, M., Pouniotis, D., Hochrein, H., Orinska, Z., Knobeloch, K.P., Plebanski, M., Wright, M.D. J. Immunol. (2004) [Pubmed]
  9. The human leucocyte surface antigen CD53 is a protein structurally similar to the CD37 and MRC OX-44 antigens. Angelisová, P., Vlcek, C., Stefanová, I., Lipoldová, M., Horejsí, V. Immunogenetics (1990) [Pubmed]
  10. The genes for CD37, CD53, and R2, all members of a novel gene family, are located on different chromosomes. Virtaneva, K.I., Angelisová, P., Baumruker, T., Horejsí, V., Nevanlinna, H., Schröder, J. Immunogenetics (1993) [Pubmed]
  11. Dectin-1 Interaction with Tetraspanin CD37 Inhibits IL-6 Production. Meyer-Wentrup, F., Figdor, C.G., Ansems, M., Brossart, P., Wright, M.D., Adema, G.J., van Spriel, A.B. J. Immunol. (2007) [Pubmed]
  12. Histologic, immunophenotypic and genotypic analyses of bone marrow trephines from patients with non-Hodgkin's lymphoma. Hodges, E., Stacey, G., White, D., Howell, W., Smith, J. Leuk. Res. (1991) [Pubmed]
  13. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Barrena, S., Almeida, J., Yunta, M., López, A., Fernández-Mosteirín, N., Giralt, M., Romero, M., Perdiguer, L., Delgado, M., Orfao, A., Lazo, P.A. Leukemia (2005) [Pubmed]
  14. Pattern of expression of tetraspanin antigen genes in Burkitt lymphoma cell lines. Ferrer, M., Yunta, M., Lazo, P.A. Clin. Exp. Immunol. (1998) [Pubmed]
  15. Expression of tetraspans transmembrane family in the epithelium of the gastrointestinal tract. Okochi, H., Mine, T., Nashiro, K., Suzuki, J., Fujita, T., Furue, M. J. Clin. Gastroenterol. (1999) [Pubmed]
  16. Characterisation of mouse CD37: cDNA and genomic cloning. Tomlinson, M.G., Wright, M.D. Mol. Immunol. (1996) [Pubmed]
  17. Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. Szöllósi, J., Horejsí, V., Bene, L., Angelisová, P., Damjanovich, S. J. Immunol. (1996) [Pubmed]
  18. Human circulating specific antibody-forming cells after systemic and mucosal immunizations: differential homing commitments and cell surface differentiation markers. Quiding-Järbrink, M., Lakew, M., Nordström, I., Banchereau, J., Butcher, E., Holmgren, J., Czerkinsky, C. Eur. J. Immunol. (1995) [Pubmed]
  19. Changes in the phenotype and immunoglobulin secretion of human B cells following co-culture with cells of an EBV+ lymphoblastoid line or fusion with mouse plasmacytoma cells. Studies in short-term and long-term culture. Ling, N.R., Lowe, J.A. Clin. Exp. Immunol. (1989) [Pubmed]
  20. Distribution of surface-membrane molecules on bone marrow and cord blood CD34+ hematopoietic cells. Saeland, S., Duvert, V., Caux, C., Pandrau, D., Favre, C., Vallé, A., Durand, I., Charbord, P., de Vries, J., Banchereau, J. Exp. Hematol. (1992) [Pubmed]
WikiGenes - Universities