The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The cytoplasmic domain of the large myelin-associated glycoprotein isoform is needed for proper CNS but not peripheral nervous system myelination.

The myelin-associated glycoprotein (MAG) is a member of the immunoglobulin gene superfamily and is thought to play a critical role in the interaction of myelinating glial cells with the axon. Myelin from mutant mice incapable of expressing MAG displays various subtle abnormalities in the CNS and degenerates with age in the peripheral nervous system (PNS). Two distinct isoforms, large MAG (L-MAG) and small MAG (S-MAG), are produced through the alternative splicing of the primary MAG transcript. The cytoplasmic domain of L-MAG contains a unique phosphorylation site and has been shown to associate with the fyn tyrosine kinase. Moreover, L-MAG is expressed abundantly early in the myelination process, possibly indicating an important role in the initial stages of myelination. We have adapted the gene-targeting approach in embryonic stem cells to generate mutant mice that express a truncated form of the L-MAG isoform, eliminating the unique portion of its cytoplasmic domain, but that continue to express S-MAG. Similar to the total MAG knockouts, these animals do not express an overt clinical phenotype. CNS myelin of the L-MAG mutant mice displays most of the pathological abnormalities reported for the total MAG knockouts. In contrast to the null MAG mutants, however, PNS axons and myelin of older L-MAG mutant animals do not degenerate, indicating that S-MAG is sufficient to maintain PNS integrity. These observations demonstrate a differential role of the L-MAG isoform in CNS and PNS myelin.[1]

References

  1. The cytoplasmic domain of the large myelin-associated glycoprotein isoform is needed for proper CNS but not peripheral nervous system myelination. Fujita, N., Kemper, A., Dupree, J., Nakayasu, H., Bartsch, U., Schachner, M., Maeda, N., Suzuki, K., Popko, B. J. Neurosci. (1998) [Pubmed]
 
WikiGenes - Universities