The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Up-regulation of transforming growth factor (TGF)-beta receptors by TGF-beta1 in COLO-357 cells.

In the present study we investigated the actions of transforming growth factor (TGF)-beta1 on gene induction and cyclin-dependent kinase inhibitors in relation to TGF-beta receptor modulation in COLO-357 pancreatic cancer cells. TGF-beta1 inhibited the growth of COLO-357 cells in a time- and dose-dependent manner and caused a rapid but transient increase in plasminogen activator inhibitor-I and insulin-like growth factor binding protein-3 mRNA levels. TGF-beta1 caused a delayed but sustained increase in the protein levels of the cyclin-dependent kinase inhibitors p15(Ink4B), p21(Cip1), and p27(Kip1) and a sustained increase in type I and II TGF-beta receptors (TbetaRI and TbetaRII) mRNA and protein levels. The protein synthesis inhibitor cycloheximide (10 microg/ml) completely blocked the TGF-beta1-mediated increase in TbetaRI and TbetaRII expression. Furthermore, a nuclear runoff transcription assay revealed that the increase in receptor mRNA levels was due to newly transcribed RNA. There was a significant increase in TbetaRI and TbetaRII mRNA levels in confluent cells in comparison to subconfluent (</=80% confluent) controls, as well as in serum- starved cells when compared with cells incubated in medium containing 10% fetal bovine serum. COLO-357 cells expressed a normal SMAD4 gene as determined by Northern blot analysis and sequencing. These results indicate that TGF-beta1 modulates a variety of functions in COLO-357 cells and up-regulates TGF-beta receptor expression via a transcriptional mechanism, which has the potential to maximize TGF-beta1-dependent antiproliferative responses.[1]


WikiGenes - Universities