The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Fully reversible redox cycling of 2,6-dimethoxy-1,4-benzoquinone induced by ascorbate.

The kinetics of cyclic redox transformation of 2,6-dimethoxy-1, 4-benzoquinone (DMOBQ)--the well-known effective anticancer agent--induced by ascorbate (AscH-) were studied in phosphate buffer, pH 7.40, at 37 degreesC using the Clark electrode and ESR techniques. The process is due to the electron transfer from AscH- to quinone (Q): Q + AscH- --> Q*- + Asc.- + H+ (1), followed by semiquinone (Q.-) oxidation: Q.- + O2 --> Q + O2.- (2). DMOBQ, taken even at submicromolar concentrations, effectively catalyzed AscH- oxidation that manifested itself by intensive oxygen consumption and an increase in the steady-state concentration of the ascorbyl radical (Asc.-). The rate of oxygen consumption, ROX, was kept almost constant for a long time. ROX was found to be proportional to the [Q][AscH-] product and not dependent on the concentrations of the individual reagents. The rate constant for reaction (1) determined from ROX and [Asc.-] was as much as 380 +/- 40 and 280 +/- 30 M-1.sec-1, respectively. When DMOBQ was mixed with the corresponding hydroquinone, QH2, in oxygen-free buffer, the ESR signal of Q.- which formed due to the equilibrium Q + QH2 left and right arrow 2Q.- + 2H+ (3) was observed. The equilibrium constant K3 of (2.6 +/- 0.4).10-5 and the change in the reduction potential, DeltaE3 = E(Q/Q.-) - E(Q.-/QH2), of -280 mV were calculated from the steady-state concentration of Q.- at pH 7.4 and 37 degrees C. From combination of DeltaE3 determined in this study with E7(Q/Q.-) reported in the literature, a value of +190 mV was calculated for the standard second one-electron reduction potential E(Q*-/QH2). The latter is lower by 270-230 mV than that for all the studied 1, 4-hydroquinones. The very beneficial combination of E(Q/Q.-) and E(Q.-/QH2) was suggested to be the basic reason for the perfect work of DMOBQ as a redox cycling agent and its pronounced anticancer activity.[1]

References

  1. Fully reversible redox cycling of 2,6-dimethoxy-1,4-benzoquinone induced by ascorbate. Roginsky, V.A., Bruchelt, G., Stegmann, H.B. Biochemistry Mosc. (1998) [Pubmed]
 
WikiGenes - Universities