The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Potential regulatory roles for G protein-coupled receptor kinases and beta-arrestins in gonadotropin-releasing hormone receptor signaling.

GnRH stimulates gonadotropin secretion, which desensitizes unless the releasing hormone is secreted or administered in a pulsatile fashion. The mechanism of desensitization is unknown, but as the GnRH receptor is G protein coupled, it might involve G protein-coupled receptor kinases (GRKs). Such kinases phosphorylate the intracellular regions of seven-transmembrane receptors, permitting beta-arrestin to bind, which prevents the receptor from activating G proteins. Here, we tested the effect of GRKs and beta-arrestins on GnRH-induced inositol trisphosphate (IP3) production in COS cells transfected with the GnRH receptor complementary DNA. GRK2, -3, and -6 overexpression inhibited IP3 production by 50-75% during the 30 sec of GnRH treatment. Coexpression of GRK2 and beta-arrestin-2 suppressed GnRH-induced IP3 production more than that of either alone. Immunocytochemical staining of rat anterior pituitary revealed that all cells expressed GRK2, -3, and -6; all cells also expressed the beta-arrestins. Western blots on cytosolic extracts of rat pituitaries revealed the presence of GRK2/3 and beta-arrestin-1 and -2. The expression of GRKs and beta-arrestins by gonadotropes and their inhibition of GnRH-stimulated IP3 production in COS-1 cells expressing the GnRH receptor suggest a potential regulatory role for the GRK/beta arrestin paradigm in GnRH receptor signaling.[1]

References

 
WikiGenes - Universities