The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Identification and characterization of cytosolic sulfotransferases in normal human endometrium.

Understanding the factors which alter estrogen metabolism and activity in endometrial tissue is important because unopposed estrogen stimulation is an important risk factor in the development of endometrial carcinoma. The cyclic progression of the endometrium through proliferative and secretory phases is normally under the control of the ovarian hormones beta-estradiol (E2) and progesterone. One mechanism by which progesterone inhibits the activity of E2 in secretory endometrium is by elevating the degree of E2 sulfation, thereby reducing its ability to bind to the estrogen receptor and elicit a cellular response. Our laboratories have investigated the cytosolic sulfotransferases (STs) found in biopsies of both proliferative and secretory endometrium obtained from five normal pre-menopausal women who were not taking any drugs or steroids. Two of the human cytosolic STs were detected in human endometrial tissues. The phenol-sulfating form of phenol ST ( P-PST) was found at varying levels in cytosol from both proliferative and secretory endometrium in all of the women studied but with no consistent correlation to the phase of the menstrual cycle. In contrast, estrogen ST (EST) was not detected in the proliferative endometrial cytosol of any of the women studied but was consistently found in all of the secretory endometrial cytosols. The presence and levels of these STs was confirmed by ST activity studies, immunoblot analysis and Northern blot analysis. These results indicate that the expression of EST in human endometrial tissues varies with the phase of the menstrual cycle and is most likely regulated by progesterone secreted from the ovaries.[1]


  1. Identification and characterization of cytosolic sulfotransferases in normal human endometrium. Falany, J.L., Azziz, R., Falany, C.N. Chem. Biol. Interact. (1998) [Pubmed]
WikiGenes - Universities