The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Global analysis of genomic texts: the distribution of AGCT tetranucleotides in the Escherichia coli and Bacillus subtilis genomes predicts translational frameshifting and ribosomal hopping in several genes.

Present availability of the genomic text of bacteria allows assignment of biological known functions to many genes (typically, half of the genome's gene content). It is now time to try and predict new unexpected functions, using inductive procedures that allow correlating the content of the genomic text to possible biological functions. We show here that analysis of the genomes of Escherichia coli and Bacillus subtilis for the distribution of AGCT motifs predicts that genes exist for which the mRNA molecule can be translated as several different proteins synthesized after ribosomal frameshifting or hopping. Among these genes we found that several coded for the same function in E. coli and B. subtilis. We analyzed in depth the situation of the infB gene (experimentally known to specify synthesis of several proteins differing in their translation starts), the aceF/pdhC gene, the eno gene, and the rplI gene. In addition, genes specific to E. coli were also studied: ompA, ompFand tolA (predicting epigenetic variation that could help escape infection by phages or colicins).[1]


WikiGenes - Universities