The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

eno  -  phosphopyruvate hydratase

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of eno

  • Initially, with a low-copy-number vector, two E. coli glycolytic gene promoters (gap and eno) were tested and found to be less effective than the original celZ promoter [1].
  • Molecular characterization of the Zymomonas mobilis enolase (eno) gene [2].
  • The structure of 3-methylaspartase from Clostridium tetanomorphum functions via the common enolase chemical step [3].
  • The recognition site is well conserved in RNase E homologues in a subfamily of the gamma-proteobacteria, including enzymes from pathogens such as Yersinia pestis, Vibrio cholera and Salmonella sp. We suggest that enolase is recruited into putative RNA degradosome machinery in these bacilli, where it plays common regulatory functions [4].
  • These E. coli recombinants were shown to express the chlamydia proteins, enolase, pmpD and CT579 [5].
 

High impact information on eno

 

Chemical compound and disease context of eno

 

Biological context of eno

 

Associations of eno with chemical compounds

  • Phosphoenolpyruvate is one of the substrates for Kdo-8-P biosynthesis by KdsA and cytidine triphosphate is the nucleotide used to activate Kdo prior to its transfer to lipid A. pyrG and eno are important for many metabolic pathways and it is interesting to find them linked to kdsA [16].
  • The amounts of eno mRNA when the bacterium was grown on glycerol or glucose were compared to that when D. vulgaris was grown on lactate [17].
  • Fluoride inhibition of enolase: crystal structure and thermodynamics [18].
  • In vitro labeling of cell extracts from glucose and acetate grown cells resulted in differential labeling of enolase [19].
  • In this article, we report the results of an analysis of the glycolytic enzyme enolase (2-phospho-d-glycerate hydrolase) of Trypanosoma brucei [20].
 

Physical interactions of eno

  • A single molecule of the RNase E peptide binds asymmetrically in a conserved cleft at the interface of the enolase dimer [4].
 

Other interactions of eno

 

Analytical, diagnostic and therapeutic context of eno

  • Using affinity chromatography, we found that PNPase-alpha and RhlB form a ribonucleolytically active complex corresponding to the mass calculated previously for alpha(3)beta(2) (i.e., 377-380 kDa), whereas no association between PNPase-alpha and enolase was detected [6].
  • To investigate the degradosome's proposed role as an RNA decay machine, we used DNA microarrays to globally assess alterations in the steady-state abundance and decay of 4,289 E. coli mRNAs at single-gene resolution in bacteria carrying mutations in the degradosome constituents RNase E, polynucleotide phosphorylase, RhlB helicase, and enolase [23].
  • Highly sensitive immunoassays for three forms of rat brain enolase [24].
  • Highly sensitive enzyme immunoassay systems for three forms (alpha alpha, alpha gamma, and gamma gamma) of rat brain enolase were prepared by use of specific antisera to two distinct subunits (alpha and gamma) of the isozymes and beta-D-galactosidase from Escherichia coli as label [24].
  • Northern-blot analysis showed a five-fold anaerobic induction in enolase mRNA, while heat shock or cold shock increased enolase mRNA levels only slightly [13].

References

  1. Enhancement of expression and apparent secretion of Erwinia chrysanthemi endoglucanase (encoded by celZ) in Escherichia coli B. Zhou, S., Yomano, L.P., Saleh, A.Z., Davis, F.C., Aldrich, H.C., Ingram, L.O. Appl. Environ. Microbiol. (1999) [Pubmed]
  2. Molecular characterization of the Zymomonas mobilis enolase (eno) gene. Burnett, M.E., Liu, J., Conway, T. J. Bacteriol. (1992) [Pubmed]
  3. The structure of 3-methylaspartase from Clostridium tetanomorphum functions via the common enolase chemical step. Asuncion, M., Blankenfeldt, W., Barlow, J.N., Gani, D., Naismith, J.H. J. Biol. Chem. (2002) [Pubmed]
  4. Recognition of enolase in the Escherichia coli RNA degradosome. Chandran, V., Luisi, B.F. J. Mol. Biol. (2006) [Pubmed]
  5. Identification of Chlamydia trachomatis antigens recognized by human CD4+ T lymphocytes by screening an expression library. Goodall, J.C., Yeo, G., Huang, M., Raggiaschi, R., Gaston, J.S. Eur. J. Immunol. (2001) [Pubmed]
  6. RhlB helicase rather than enolase is the beta-subunit of the Escherichia coli polynucleotide phosphorylase (PNPase)-exoribonucleolytic complex. Lin, P.H., Lin-Chao, S. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  7. Evidence in vivo that the DEAD-box RNA helicase RhlB facilitates the degradation of ribosome-free mRNA by RNase E. Khemici, V., Poljak, L., Toesca, I., Carpousis, A.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  8. Spk1, a new kinase from Saccharomyces cerevisiae, phosphorylates proteins on serine, threonine, and tyrosine. Stern, D.F., Zheng, P., Beidler, D.R., Zerillo, C. Mol. Cell. Biol. (1991) [Pubmed]
  9. Expression of Rous sarcoma virus transforming protein pp60v-src in Saccharomyces cerevisiae cells. Brugge, J.S., Jarosik, G., Andersen, J., Queral-Lustig, A., Fedor-Chaiken, M., Broach, J.R. Mol. Cell. Biol. (1987) [Pubmed]
  10. Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. Tamarit, J., Cabiscol, E., Ros, J. J. Biol. Chem. (1998) [Pubmed]
  11. Enolase in the RNA degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli. Morita, T., Kawamoto, H., Mizota, T., Inada, T., Aiba, H. Mol. Microbiol. (2007) [Pubmed]
  12. Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli. Hubbard, B.K., Koch, M., Palmer, D.R., Babbitt, P.C., Gerlt, J.A. Biochemistry (1998) [Pubmed]
  13. Characterization of a maize cDNA that complements an enolase-deficient mutant of Escherichia coli. Lal, S.K., Johnson, S., Conway, T., Kelley, P.M. Plant Mol. Biol. (1991) [Pubmed]
  14. Glyceraldehyde 3-p dehydrogenase, glycerate 3-P kinase and enolase mutants of Escherichia coli: genetic studies. Irani, M.H., Maitra, P.K. Mol. Gen. Genet. (1976) [Pubmed]
  15. Clustering of genes for L-fucose dissimilation by Escherichia coli. Chakrabarti, T., Chen, Y.M., Lin, E.C. J. Bacteriol. (1984) [Pubmed]
  16. Genetic and biochemical characterization of an operon involved in the biosynthesis of 3-deoxy-D-manno-octulosonic acid in Pseudomonas aeruginosa. Walsh, A.G., Burrows, L.L., Lam, J.S. FEMS Microbiol. Lett. (1999) [Pubmed]
  17. Cloning and expression of the enolase gene from Desulfovibrio vulgaris (Miyazaki F). Kitamura, M., Takayama, Y., Kojima, S., Kohno, K., Ogata, H., Higuchi, Y., Inoue, H. Biochim. Biophys. Acta (2004) [Pubmed]
  18. Fluoride inhibition of enolase: crystal structure and thermodynamics. Qin, J., Chai, G., Brewer, J.M., Lovelace, L.L., Lebioda, L. Biochemistry (2006) [Pubmed]
  19. Phosphorylation of Escherichia coli enolase. Dannelly, H.K., Duclos, B., Cozzone, A.J., Reeves, H.C. Biochimie (1989) [Pubmed]
  20. Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase. Hannaert, V., Albert, M.A., Rigden, D.J., da Silva Giotto, M.T., Thiemann, O., Garratt, R.C., Van Roy, J., Opperdoes, F.R., Michels, P.A. Eur. J. Biochem. (2003) [Pubmed]
  21. Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis. Leyva-Vazquez, M.A., Setlow, P. J. Bacteriol. (1994) [Pubmed]
  22. RNase G-dependent degradation of the eno mRNA encoding a glycolysis enzyme enolase in Escherichia coli. Kaga, N., Umitsuki, G., Nagai, K., Wachi, M. Biosci. Biotechnol. Biochem. (2002) [Pubmed]
  23. Global analysis of Escherichia coli RNA degradosome function using DNA microarrays. Bernstein, J.A., Lin, P.H., Cohen, S.N., Lin-Chao, S. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  24. Highly sensitive immunoassays for three forms of rat brain enolase. Kato, K., Suzuki, F., Umeda, Y. J. Neurochem. (1981) [Pubmed]
 
WikiGenes - Universities