The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Tyr254 hydroxyl group acts as a two-way switch mechanism in the coupling of heterotropic and homotropic effects in Escherichia coli glucosamine-6-phosphate deaminase.

The involvement of tyrosine residues in the allosteric function of the enzyme glucosamine 6-phosphate deaminase from Escherichia coli was first proposed on the basis of a theoretical analysis of the sequence and demonstrated by spectrophotometric experiments. Two tyrosine residues, Tyr121 and Tyr254, were indicated as involved in the mechanism of cooperativity and in the allosteric regulation of the enzyme [Altamirano et al. (1994) Eur. J. Biochem. 220, 409-413]. Tyr121 replacement by threonine or tryptophan altered the symmetric character of the T --> R transition [Altamirano et al. (1995) Biochemistry 34, 6074-6082]. From crystallographic data of the R allosteric conformer, Tyr254 has been shown to be part of the allosteric pocket [Oliva et al. (1995) Structure 3, 1323-1332]. Although it is not directly involved in binding the allosteric activator, N-acetylglucosamine 6-phosphate, Tyr 254 is hydrogen bonded through its phenolic hydroxyl to the backbone carbonyl from residue 161 in the neighboring polypeptide chain. Kinetic and binding experiments with the mutant form Tyr254-Phe of the enzyme reveal that this replacement caused an uncoupling of the homotropic and heterotropic effects. Homotropic cooperativity diminished and the allosteric activation pattern changed from one of the K-type in the wild-type deaminase to a mixed K-V pattern. On the other hand, Tyr254-Trp deaminase is kinetically closer to a K-type enzyme and it has a higher catalytic efficiency than the wild-type protein. These results show that the interactions of Tyr254 are fundamental in coupling binding in the active site to events occurring in the allosteric pocket of E. coli glucosamine 6-P deaminase.[1]

References

 
WikiGenes - Universities