Adenylyl cyclase activity and gene expression during mesodermal differentiation of the P19 embryonal carcinoma cells.
DMSO-primed P19 pluripotent cells, which recapitulate the first stages of mammalian cardiogenesis and endodermal formation, were used as an in vitro model to analyze the variations in activity and expression of the different adenylyl cyclase (AC) isoforms during the early events of embryonic cell differentiation. Here, we show that the total AC activity, which increases up to 10-fold after differentiation of P19 cells, is mainly associated with increases in AC2, AC5, and AC6 mRNA levels. Particularly, the marked increase in AC5 mRNA correlates with the appearance of beating cardiomyocytes and with the transcription of the atrial myosin light chain (MLC1A) gene which encodes a protein specifically involved in the cardiac muscle cell contractile phenotype. Together, the results strongly suggest that 1) a rise in cyclic AMP (cAMP) may be associated with cardiomyocyte and endodermal cell differentiation during mammalian embryogenesis; and 2) AC5 gene expression starts very early during normal mouse cardiogenesis and correlates with the differentiation of cardiomyocytes.[1]References
- Adenylyl cyclase activity and gene expression during mesodermal differentiation of the P19 embryonal carcinoma cells. Lipskaia, L., Grépin, C., Defer, N., Hanoune, J. J. Cell. Physiol. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg