The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Investigation of the Streptomyces clavuligerus cephamycin C gene cluster and its regulation by the CcaR protein.

As part of a search for transcriptional regulatory genes, sequence analysis of several previously unsequenced gaps in the cephamycin biosynthetic cluster has revealed the presence in Streptomyces clavuligerus of seven genes not previously described. These include genes encoding an apparent penicillin binding protein and a transport or efflux protein, as well as the CmcI and CmcJ proteins, which catalyze late reactions in the cephamycin biosynthetic pathway. In addition, we discovered a gene, designated pcd, which displays significant homology to genes encoding semialdehyde dehydrogenases and may represent the gene encoding the long-sought-after dehydrogenase involved in the conversion of lysine to alpha-aminoadipate. Finally, two genes, sclU and rhsA, with no obvious function in cephamycin biosynthesis may define the end of the cluster. The previously described CcaR protein displays homology to a number of Streptomyces pathway-specific transcriptional activators. The ccaR gene was shown to be essential for the biosynthesis of cephamycin, clavulanic acid, and non-clavulanic acid clavams. Complementation of a deletion mutant lacking ccaR and the adjacent orf11 and blp genes showed that only ccaR was essential for the biosynthesis of cephamycin, clavulanic acid, and clavams and that mutations in orf11 or blp had no discernible effects. The lack of cephamycin production in ccaR mutants was directly attributable to the absence of biosynthetic enzymes responsible for the early and middle steps of the cephamycin biosynthetic pathway. Complementation of the ccaR deletion mutant resulted in the return of these biosynthetic enzymes and the restoration of cephamycin production.[1]


WikiGenes - Universities