The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The negative feedback actions of progesterone on gonadotropin-releasing hormone secretion are transduced by the classical progesterone receptor.

Progesterone (P) powerfully inhibits gonadotropin-releasing hormone (GnRH) secretion in ewes, as in other species, but the neural mechanisms underlying this effect remain poorly understood. Using an estrogen (E)-free ovine model, we investigated the immediate GnRH and luteinizing hormone (LH) response to acute manipulations of circulating P concentrations and whether this response was mediated by the nuclear P receptor. Simultaneous hypophyseal portal and jugular blood samples were collected over 36 hr: 0-12 hr, in the presence of exogenous P (P treatment begun 8 days earlier); 12-24 hr, P implant removed; 24-36 hr, P implant reinserted. P removal caused a significant rapid increase in the GnRH pulse frequency, which was detectable within two pulses (175 min). P insertion suppressed the GnRH pulse frequency even faster: the effect detectable within one pulse (49 min). LH pulsatility was modulated identically. The next two experiments demonstrated that these effects of P are mediated by the nuclear P receptor since intracerebroventricularly infused P suppressed LH release but 3alpha-hydroxy-5alpha-pregnan-20-one, which operates through the type A gamma-aminobutyric acid receptor, was without effect and pretreatment with the P-receptor antagonist RU486 blocked the ability of P to inhibit LH. Our final study showed that P exerts its acute suppression of GnRH through an E-dependent system because the effects of P on LH secretion, lost after long-term E deprivation, are restored after 2 weeks of E treatment. Thus we demonstrate that P acutely inhibits GnRH through an E-dependent nuclear P-receptor system.[1]

References

  1. The negative feedback actions of progesterone on gonadotropin-releasing hormone secretion are transduced by the classical progesterone receptor. Skinner, D.C., Evans, N.P., Delaleu, B., Goodman, R.L., Bouchard, P., Caraty, A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
 
WikiGenes - Universities