The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel.

Non-inactivating or slowly inactivating proton-gated cation channels are thought to play an important role in the perception of pain that accompanies tissue acidosis. We have identified a novel human proton-gated cation channel subunit that has biphasic desensitisation kinetics with both a rapidly inactivating Na+-selective and a sustained component. The protein shares 84% sequence identity with the proton-gated cation channel rASIC3 (rDRASIC) from rat sensory neurones. The biphasic desensitisation kinetics and the sequence homology suggest that this novel clone (hASIC3) is the human orthologue of rASIC3 (rDRASIC). While rASIC3 (rDRASIC) requires very acidic pH (pH < 4.5) for activation of the sustained current, the non-inactivating hASIC3 current starts to be activated when the pH decreases to below pH 6. hASIC3 is an acid sensor and might play an important role in the detection of lasting pH changes in human. We localised the hASIC3 gene to the human chromosome 7q35, 6.4 cRad telomeric from the microsatellite AFMA082XC9.[1]

References

  1. Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel. de Weille, J.R., Bassilana, F., Lazdunski, M., Waldmann, R. FEBS Lett. (1998) [Pubmed]
 
WikiGenes - Universities