The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Tissue-specific effects of in vivo adenosine receptor blockade on glucose uptake in Zucker rats.

Previous studies have shown that treatment of obese Zucker rats with the adenosine receptor antagonist 1,3-dipropyl-8-(p-acrylic) phenyl xanthine (BWA1433) improves intraperitoneal glucose tolerance. In this study, a euglycemic hyperinsulinemic clamp was performed on obese (fa/fa) and lean (Fa/fa) Zucker rats that had been treated orally with BWA1433 or vehicle for 1 wk. A constant infusion of [3H]glucose was initiated in fasted animals to measure basal whole body glucose kinetics. No differences in glucose concentration or rates of glucose production/disappearance were observed between lean or obese animals with or without BWA1433. During the euglycemic hyperinsulinemic clamp, whole body glucose disposal in obese Zucker rats was only 22% of that observed in lean animals. BWA1433 treatment increased glucose disposal by 88% in obese Zucker rats. At the end of the clamp, [14C]-2-deoxyglucose was injected to determine tissue-specific differences in glucose uptake. Gastrocnemius, soleus, heart, and liver of untreated obese animals had significantly lower glucose uptake than lean controls under hyperinsulinemic conditions. BWA1433 treatment of obese animals increased glucose uptake in gastrocnemius and soleus muscles by 44 and 47%, respectively. Conversely, BWA1433 treatment decreased glucose uptake in adipose tissue by 54 and 49% in obese and lean Zucker rats, respectively. In summary, BWA1433 improves glucose tolerance by increasing glucose uptake in skeletal muscle while decreasing glucose uptake by adipose tissue. This study suggests that insulin resistance in obese Zucker rats is tissue specific and that signaling from adenosine receptors may be a factor contributing to tissue-specific insulin resistance.[1]


  1. Tissue-specific effects of in vivo adenosine receptor blockade on glucose uptake in Zucker rats. Crist, G.H., Xu, B., Lanoue, K.F., Lang, C.H. FASEB J. (1998) [Pubmed]
WikiGenes - Universities