Molecular distance measurements reveal an (alpha beta)2 dimeric structure of Na+/K+-ATPase. High affinity ATP binding site and K+-activated phosphatase reside on different alpha-subunits.
ATP hydrolysis by Na+/K+-ATPase proceeds via the interaction of simultaneously existing and cooperating high (E1ATP) and low (E2ATP) substrate binding sites. It is unclear whether both ATP sites reside on the same or on different catalytic alpha-subunits. To answer this question, we looked for a fluorescent label for the E2ATP site that would be suitable for distance measurements by Förster energy transfer after affinity labeling of the E1ATP site by fluorescein 5'-isothiocyanate (FITC). Erythrosin 5'-isothiocyanate (ErITC) inactivated, in an E1ATP site-blocked enzyme (by FITC), the residual activity of the E2ATP site, namely K+-activated p-nitrophenylphosphatase in a concentration-dependent way that was ATP-protectable. The molar ratios of FITC/alpha-subunit of 0.6 and of ErITC/alpha-subunit of 0.48 indicate 2 ATP sites per (alpha beta)2 diprotomer. Measurements of Förster energy transfer between the FITC-labeled E1ATP and the ErITC-labeled or Co(NH3)4ATP-inactivated E2ATP sites gave a distance of 6.45 +/- 0.64 nm. This distance excludes 2 ATP sites per alpha-subunit since the diameter of alpha is 4-5 nm. Förster energy transfer between cardiac glycoside binding sites labeled with anthroylouabain and fluoresceinylethylenediamino ouabain gave a distance of 4.9 +/- 0.5 nm. Hence all data are consistent with the hypothesis that Na+/K+-ATPase in cellular membranes is an (alpha beta)2 diprotomer and works as a functional dimer (Thoenges, D., and Schoner, W. (1997) J. Biol. Chem. 272, 16315-16321).[1]References
- Molecular distance measurements reveal an (alpha beta)2 dimeric structure of Na+/K+-ATPase. High affinity ATP binding site and K+-activated phosphatase reside on different alpha-subunits. Linnertz, H., Urbanova, P., Obsil, T., Herman, P., Amler, E., Schoner, W. J. Biol. Chem. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg