The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

ouabain     4-[ (1R,3S,5S,8R,9R,10S,11R,13R,14 S,17S)-1...

Synonyms: Kombetin, Ouabaine, Astrobain, Gratibain, Quabain, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ouabain

 

Psychiatry related information on ouabain

 

High impact information on ouabain

  • Na,K-ATPase beta2 expression is negligible, indicating that the human cardiac glycoside receptors are alpha1beta1, alpha2beta1, and alpha3beta1. alpha3, beta1, sodium pump activity, and Na+-Ca++ exchanger levels were 30-50% lower in atria compared to ventricles and/or septum; differences between ventricles and septum were insignificant [7].
  • Thyroid-induced alterations in myocardial sodium-potassium-activated adenosine triphosphatase, monovalent cation active transport, and cardiac glycoside binding [8].
  • We conclude that reduced regional myocardial blood flow, local alterations in cellular milieu, and altered glycoside-binding properties of (Na+ + K+)-ATPase all participate in the reduction of cardiac glycoside binding observed after reperfusion of ischemic myocardium [1].
  • BACKGROUND: Severe cardiac glycoside cardiotoxicity after ingestion of yellow oleander seeds is an important problem in rural areas of Sri Lanka. Currently, patients must be transferred to the capital for temporary cardiac pacing [9].
  • Digitoxin and structurally related cardiac glycoside drugs potently block activation of the TNF-alpha/NF-kappaB signaling pathway [10].
 

Chemical compound and disease context of ouabain

 

Biological context of ouabain

 

Anatomical context of ouabain

  • To determine contributory mechanisms for the effects of PROT on myocyte sarcolemmal systems, beta-receptor- and cardiac glycoside-binding characteristics were determined in sarcolemmal preparations. beta-receptor binding was 175 +/- 10 fmol/mg and was reduced to 140 +/- 6 fmol/mg in the presence of PROT (P < .05) [20].
  • The effects of the cardiac glycoside ouabain and an "ouabain-like compound" (OLC), which was extracted and partially purified from sheep brain, were contrasted using both the resting and hyperpolarized fibroblasts [21].
  • Intracellular sodium and the positive inotropic effect of veratridine and cardiac glycoside in sheep Purkinje fibers [22].
  • The role of arterial baroreceptors in mediating the cardiovascular response to a cardiac glycoside in conscious dogs [23].
  • Biochemical and cross-resistance studies with HeLa cell mutants resistant to cardiac glycoside SC4453. Regulation of the resistant form of Na+/K+-ATPase in the mutant cells [24].
 

Associations of ouabain with other chemical compounds

 

Gene context of ouabain

 

Analytical, diagnostic and therapeutic context of ouabain

  • Development of a hypothetical transmembrane organization for the alpha subunit and application of site-specific mutagenesis techniques have allowed significant progress to be made toward identifying amino acids involved in cardiac glycoside resistance and possibly binding [34].
  • Methodologic progress and availability of commercial radioimmunoassay kits have placed measurement of clinically relevant serum or plasma cardiac glycoside concentrations within the capability of most well equipped clinical laboratories [35].
  • Because of the competitive nature of the immunoassay as well as the complexity of the mixture of cross-reacting cardiac glycosides present in the plant material, the measured apparent digoxin concentration is not linearly related to the cardiac glycoside concentration [36].
  • Cardiac glycoside binding to microsomes prepared from rat heart ventricles and enriched in (Na+ + K+)-ATPase was measured by a rapid filtration technique [37].
  • Renal tubular transport of a polar cardiac glycoside, ASI-222, in rats; clearance and micropuncture studies [38].

References

  1. Ischemia-induced alterations in myocardial (Na+ + K+)-ATPase and cardiac glycoside binding. Beller, G.A., Conroy, J., Smith, T.W. J. Clin. Invest. (1976) [Pubmed]
  2. Contrasting rates of reversal of digoxin toxicity by digoxin-specific IgG and Fab fragments. Lloyd, B.L., Smith, T.W. Circulation (1978) [Pubmed]
  3. The sodium pump and hypertension: a physiological role for the cardiac glycoside binding site of the Na,K-ATPase. Kaplan, J.H. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  4. Modulation of cytokine production and protection against lethal endotoxemia by the cardiac glycoside ouabain. Matsumori, A., Ono, K., Nishio, R., Igata, H., Shioi, T., Matsui, S., Furukawa, Y., Iwasaki, A., Nose, Y., Sasayama, S. Circulation (1997) [Pubmed]
  5. Effects of a cardiac glycoside on regional function, blood flow, and electrograms in conscious dogs with myocardial ischemia. Vatner, S.F., Baig, H., Manders, W.T., Murray, P.A. Circ. Res. (1978) [Pubmed]
  6. Cardiac glycoside toxicity. An unusual manifestation of drug addiction. Kennedy, M. Med. J. Aust. (1981) [Pubmed]
  7. Regional expression of sodium pump subunits isoforms and Na+-Ca++ exchanger in the human heart. Wang, J., Schwinger, R.H., Frank, K., Müller-Ehmsen, J., Martin-Vasallo, P., Pressley, T.A., Xiang, A., Erdmann, E., McDonough, A.A. J. Clin. Invest. (1996) [Pubmed]
  8. Thyroid-induced alterations in myocardial sodium-potassium-activated adenosine triphosphatase, monovalent cation active transport, and cardiac glycoside binding. Curfman, G.D., Crowley, T.J., Smith, T.W. J. Clin. Invest. (1977) [Pubmed]
  9. Anti-digoxin Fab fragments in cardiotoxicity induced by ingestion of yellow oleander: a randomised controlled trial. Eddleston, M., Rajapakse, S., Rajakanthan, n.u.l.l., Jayalath, S., Sjöström, L., Santharaj, W., Thenabadu, P.N., Sheriff, M.H., Warrell, D.A. Lancet (2000) [Pubmed]
  10. Cardiac glycosides inhibit TNF-alpha/NF-kappaB signaling by blocking recruitment of TNF receptor-associated death domain to the TNF receptor. Yang, Q., Huang, W., Jozwik, C., Lin, Y., Glasman, M., Caohuy, H., Srivastava, M., Esposito, D., Gillette, W., Hartley, J., Pollard, H.B. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  11. Digoxin disrupts the inflammatory response in experimental pneumococcal pneumonia. Esposito, A.L. J. Infect. Dis. (1985) [Pubmed]
  12. Studies on digitalis. XIII. A prospective study of 649 patients on maintenance treatment with digitoxin. Storstein, O., Hansteen, V., Hatle, L., Hillestad, L., Storstein, L. Am. Heart J. (1977) [Pubmed]
  13. Investigation of electrophysiologic mechanisms for the antiarrhythmic actions of R 56865 in cardiac glycoside toxicity. Damiano, B.P., Stump, G.L., Yagel, S.K. J. Cardiovasc. Pharmacol. (1991) [Pubmed]
  14. The effects of prazosin in severe congestive heart failure. An echocardiographic study. Drăgulescu, S.I., Comşulea, L., Streian, C. Médecine interne. (1984) [Pubmed]
  15. The effects of captopril in severe congestive heart failure. An echocardiographic study. Drăgulescu, S.I., Nicolin, M., Streian, C. Médecine interne. (1989) [Pubmed]
  16. The highly conserved cardiac glycoside binding site of Na,K-ATPase plays a role in blood pressure regulation. Dostanic-Larson, I., Van Huysse, J.W., Lorenz, J.N., Lingrel, J.B. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  17. Rat cardiac ventricle has two Na+,K+-ATPases with different affinities for ouabain: developmental changes in immunologically different catalytic subunits. Sweadner, K.J., Farshi, S.K. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  18. Molecular distance measurements reveal an (alpha beta)2 dimeric structure of Na+/K+-ATPase. High affinity ATP binding site and K+-activated phosphatase reside on different alpha-subunits. Linnertz, H., Urbanova, P., Obsil, T., Herman, P., Amler, E., Schoner, W. J. Biol. Chem. (1998) [Pubmed]
  19. Functional properties of an H,K-ATPase/Na,K-ATPase chimera. Blostein, R., Zhang, R., Gottardi, C.J., Caplan, M.J. J. Biol. Chem. (1993) [Pubmed]
  20. Direct effects of protamine sulfate on myocyte contractile processes. Cellular and molecular mechanisms. Hird, R.B., Wakefield, T.W., Mukherjee, R., Jones, B.U., Crawford, F.A., Andrews, P.C., Stanley, J.C., Spinale, F.G. Circulation (1995) [Pubmed]
  21. Membrane potential changes induced by the ouabain-like compound extracted from mammalian brain. Lichtstein, D., Samuelov, S. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  22. Intracellular sodium and the positive inotropic effect of veratridine and cardiac glycoside in sheep Purkinje fibers. Brill, D.M., Wasserstrom, J.A. Circ. Res. (1986) [Pubmed]
  23. The role of arterial baroreceptors in mediating the cardiovascular response to a cardiac glycoside in conscious dogs. McRitchie, R.J., Vatner, S.F. Circ. Res. (1976) [Pubmed]
  24. Biochemical and cross-resistance studies with HeLa cell mutants resistant to cardiac glycoside SC4453. Regulation of the resistant form of Na+/K+-ATPase in the mutant cells. Chopra, A., Gupta, R.S. J. Biol. Chem. (1986) [Pubmed]
  25. Deglycosylated products of endogenous digoxin-like immunoreactive factor in mammalian tissue. Qazzaz, H.M., Goudy, S.L., Valdes, R. J. Biol. Chem. (1996) [Pubmed]
  26. Pharmacokinetics, bioavailability and serum levels of cardiac glycosides. Smith, T.W. J. Am. Coll. Cardiol. (1985) [Pubmed]
  27. Erythrosin B inhibits high affinity ouabain binding in guinea-pig heart Na+-K+-ATPase without influence on cardiac glycoside induced contractility. Fricke, U. Br. J. Pharmacol. (1985) [Pubmed]
  28. Actions of the digitalis analogue strophanthidin on action potentials and L-type calcium current in single cells isolated from the rabbit atrioventricular node. Hancox, J.C., Levi, A.J. Br. J. Pharmacol. (1996) [Pubmed]
  29. Effects of quinidine on the cardiac-glycoside sensitivity of guinea-pig and rat heart. Kim, D.H., Akera, T., Brody, T.M. J. Pharmacol. Exp. Ther. (1981) [Pubmed]
  30. Oleandrin suppresses activation of nuclear transcription factor-kappaB, activator protein-1, and c-Jun NH2-terminal kinase. Manna, S.K., Sah, N.K., Newman, R.A., Cisneros, A., Aggarwal, B.B. Cancer Res. (2000) [Pubmed]
  31. Participation of Na,K-ATPase in FGF-2 secretion: rescue of ouabain-inhibitable FGF-2 secretion by ouabain-resistant Na,K-ATPase alpha subunits. Dahl, J.P., Binda, A., Canfield, V.A., Levenson, R. Biochemistry (2000) [Pubmed]
  32. Cardiac glycoside inhibits IL-8-induced biological responses by downregulating IL-8 receptors through altering membrane fluidity. Manna, S.K., Sreenivasan, Y., Sarkar, A. J. Cell. Physiol. (2006) [Pubmed]
  33. Molecular cloning and functional characterization of the mouse organic-anion-transporting polypeptide 1 (Oatp1) and mapping of the gene to chromosome X. Hagenbuch, B., Adler, I.D., Schmid, T.E. Biochem. J. (2000) [Pubmed]
  34. Molecular genetics of Na,K-ATPase. Lingrel, J.B., Orlowski, J., Shull, M.M., Price, E.M. Prog. Nucleic Acid Res. Mol. Biol. (1990) [Pubmed]
  35. Digitalis toxicity: epidemiology and clinical use of serum concentration measurements. Smith, T.W. Am. J. Med. (1975) [Pubmed]
  36. Detection of poisoning by plant-origin cardiac glycoside with the Abbott TDx analyzer. Cheung, K., Hinds, J.A., Duffy, P. Clin. Chem. (1989) [Pubmed]
  37. Heterogeneity of ouabain specific binding sites and (Na+ + K+)-ATPase inhibition in microsomes from rat heart. Noel, F., Godfraind, T. Biochem. Pharmacol. (1984) [Pubmed]
  38. Renal tubular transport of a polar cardiac glycoside, ASI-222, in rats; clearance and micropuncture studies. Kauker, M.L., Nash, C.B., Caldwell, R.W. J. Pharmacol. Exp. Ther. (1981) [Pubmed]
 
WikiGenes - Universities