The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effects of the agrochemicals butachlor, pretilachlor and isoprothiolane on rat liver xenobiotic-metabolizing enzymes.

1. The herbicides butachlor (2-chloro-2',6',diethyl-N-[buthoxymethyl] acetanilide) and pretilachlor (2-chloro-2',6'-diethyl-N-[2-propoxyethyl] acetanilide) are widely used in Asia, South America, Europe and Africa. Isoprothiolane (diisopropyl-1,3-dithiolan-2-ylidenemalonate) is used as a fungicide and an insecticide in rice paddies. We administered these agrochemicals to the male rat and examined their effects on cytochrome P450 (P450), glutathione S-transferase (GST), UDP-glucuronosyltransferase (UDPGT), and NAD(P)H-quinone oxidoreductase 1 (NQO1)-related metabolism in the liver. 2. Administration of isoprothiolane, butachlor or pretilachlor to rat induced hepatic P4502B subfamily-dependent enzyme activities (pentoxyresorufin O-depentylation and testosterone 16 beta-hydroxylation) up to 271-413% of control, which coincided with the increase in expression levels of the P4502B apoprotein. 3. Activities of GST toward 1-chloro-2,4-nitrobenzene and 3,4-dichloronitrobenzene were slightly induced (127-133% of control) in the liver of the rat treated with these pesticides. On the other hand, marked elevations of UDPGT activities toward p-nitrophenol (164-281% of control) were observed. NQO1-related metabolism (menadione reductase activity) was also induced (123-176% of control) in the liver of rat treated with these agrochemicals. 4. These results indicate that some of the agrochemicals currently in use are capable of inducing phase I and II xenobiotic-metabolizing enzyme activities in an isozyme selective manner. The induction of these activities may disrupt normal physiologic functions related to these enzymes in exposed animals.[1]


  1. Effects of the agrochemicals butachlor, pretilachlor and isoprothiolane on rat liver xenobiotic-metabolizing enzymes. Ishizuka, M., Iwata, H., Kazusaka, A., Hatakeyama, S., Fujita, S. Xenobiotica (1998) [Pubmed]
WikiGenes - Universities