The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanistic studies comparing the incorporation of (+) and (-) isomers of 3TCTP by HIV-1 reverse transcriptase.

Among the nucleoside inhibitors used clinically as anti-HIV drugs which target HIV-1 reverse transcriptase (RT), (-)-2', 3'-dideoxy-3'-thiacytidine [(-)SddC or 3TC] is the only analogue with the unnatural L(-) nucleoside configuration. 3TC has been shown to be more potent and less toxic than the D(+) isomer, (+)SddC, which has the natural nucleoside configuration. The mechanistic basis for the stereochemical selectivity and differential toxicity of the isomeric SddC compounds is not completely understood although a number of factors may clearly come into play including differences in uptake, metabolic activation, degradation, and transport. We used a pre-steady-state kinetic analysis to determine the maximum rate of incorporation, kpol, nucleotide-binding affinity, Kd, and efficiency of incorporation, kpol/Kd, for the (-) and (+) isomeric SddCTP compounds as well as the corresponding dideoxy and natural nucleoside triphosphates into a primer-template complex using HIV-1 reverse transcriptase. The affinity (Kd) of the dNTP was much tighter and the efficiency (kpol/Kd) of incorporation by enzyme into the primer-template complex was much higher for the DNA/RNA primer-template compared to DNA/DNA. The maximum rate of incorporation, kpol, followed the trend of dCTP > ddCTP > (+)SddCTP > (-)SddCTP while the Kd values determined for the DNA/RNA primer-template followed the order (-)SddCTP congruent with (+)SddCTP congruent with ddCTP > dCTP. The corresponding efficiency of incorporation followed the trend dCTP > ddCTP > (+)SddCTP > (-)SddCTP. These data suggest that perturbations on the ribose ring of cytidine analogues (C --> S) decrease the rate and efficiency of incorporation but enhance the binding affinity. These results are discussed in the context of a computer modeled structure of the ternary complexes of RT, DNA/RNA primer-template, and SddCTP analogues as well as implications for structure-activity relationships and further drug design. This information provides a mechanistic basis for understanding the inhibition of HIV-1 reverse transcriptase by 3TC.[1]

References

 
WikiGenes - Universities