The contribution of activated factor XIII to fibrinolytic resistance in experimental pulmonary embolism.
BACKGROUND: The resistance of thrombi to fibrinolysis induced by plasminogen activators remains a major impediment to the successful treatment of thrombotic diseases. This study examines the contribution of activated factor XIII (factor XIIIa) to fibrinolytic resistance in experimental pulmonary embolism. METHODS AND RESULTS: The fibrinolytic effects of specific inhibitors of factor XIIIa-mediated fibrin-fibrin cross-linking and alpha2-antiplasmin-fibrin cross-linking were measured in anesthetized ferrets with pulmonary emboli. Five experimental groups were treated with heparin (100 U/kg) and/or tissue plasminogen activator (TPA, 1 mg/kg) and the percent (mean+/-SD) lysis of emboli was determined: (1) control, normal factor XIIIa activity (14.1+/-4. 8% lysis); (2) inhibited factor XIIIa activity (42.7+/-7.4%); (3) normal factor XIIIa activity+TPA (32.3+/-7.7%); (4) inhibited factor XIIIa activity+TPA (76.0+/-11.9%); and (5) inhibited alpha2-antiplasmin-fibrin cross-linking+TPA (54.7+/-3.9%). Inhibition of factor XIIIa activity increased endogenous lysis markedly (group 1 versus 2; P<0.0001), to a level comparable to that achieved with TPA (group 2 versus 3; P<0.05). Among groups receiving TPA, selective inhibition of factor XIII-mediated alpha2-antiplasmin-fibrin cross-linking enhanced lysis (group 3 versus 5; P<0.0005). Complete inhibition of factor XIIIa also amplified lysis (group 3 versus 4; P<0.0001) and had greater effects than inhibition of alpha2-antiplasmin cross-linking alone (group 4 versus 5; P<0.0005). No significant fibrinogen degradation occurred in any group. CONCLUSIONS: Factor XIIIa-mediated fibrin-fibrin and alpha2-antiplasmin-fibrin cross-linking both caused experimental pulmonary emboli to resist endogenous and TPA-induced fibrinolysis. This suggests that factor XIIIa may play a critical role in regulating fibrinolysis in human thrombosis.[1]References
- The contribution of activated factor XIII to fibrinolytic resistance in experimental pulmonary embolism. Reed, G.L., Houng, A.K. Circulation (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg