The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

cDNA cloning, sequencing, and characterization of male and female rat liver aldehyde oxidase (rAOX1). Differences in redox status may distinguish male and female forms of hepatic APX.

Molecular characterization of male and female rat liver aldehyde oxidase is reported. As described for the mouse liver, male and female rat liver expressed kinetically distinct forms of aldehyde oxidase. Our data suggest that the two forms arise as a result of differences in redox state and are most simply explained by expression of a single gene encoding aldehyde oxidase in rats. In support of this argument we have sequenced cDNAs from male and female rat liver. We examined mRNA expression by Northern blot analysis with RNA from males and females, from several tissues, and following androgen induction. Purified rat liver enzyme from males or females revealed a single 150-kDa species consistent with cDNA sequence analysis. Both male and female forms were reactive to the same carboxyl-terminal directed antisera. Km(app) values obtained in crude extracts of male or female rat liver and post-benzamidine-purified aldehyde oxidase differed substantially from each other but could be interconverted by chemical reduction with dithiothreitol or oxidation with 4,4'-dithiodipyridine. Our data indicate that a single gene is most likely expressed in male or female rat liver and that the kinetic differences between male and female rat liver aldehyde oxidases are sensitive to redox manipulation.[1]

References

 
WikiGenes - Universities