An NMR study of ligand binding by maltodextrin binding protein.
Proton NMR spectra of maltodextrin binding protein from Escherichia coli were used to monitor conformational changes that accompany ligand binding. Chemical shift changes associated with the binding of different maltodextrins to maltodextrin binding protein were studied using one-dimensional difference spectra. Line-shape analysis of an isolated upfield methyl resonance was used to measure the kinetics of maltose binding at several temperatures. Maltose and linear maltodextrins caused similar changes to the upfield protein spectrum with no detectable differences between alpha and beta sugar anomers. Binding of a cyclic ligand, beta-cyclodextrin, caused smaller chemical shift changes than binding of linear maltodextrins. Two maltodextrin derivatives were also studied. Both maltohexaitol and maltohexanoic acid gave one-dimensional difference spectra that were intermediate between those of linear maltodextrins and beta-cyclodextrin. The methyl resonances at -1 and -0.35 ppm were assigned to leucine 160 on the basis of homonuclear COSY and TOCSY experiments and theoretical chemical shift calculations using the X-ray crystal structure of maltodextrin binding protein.[1]References
- An NMR study of ligand binding by maltodextrin binding protein. Gehring, K., Zhang, X., Hall, J., Nikaido, H., Wemmer, D.E. Biochem. Cell Biol. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg