The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

malE  -  maltose ABC transporter periplasmic protein

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of malE

 

High impact information on malE

  • Mutations were introduced into a plasmid-borne malE gene that encodes a mutant form of MBP in which two engineered Cys residues spontaneously generate a disulfide bond in the oxidizing environment of the periplasmic space [5].
  • Escherichia coli strain MM18 cells containing malE-lacZ hybrid protein was reported to accumulate prolipoprotein when they were induced with maltose [Ito, K., Bassford, P. J. & Beckwith, J. (1981) Cell 24, 707-717] [6].
  • The comparison of the PotD structure with the two maltodextrin-binding protein structures, determined in the presence and absence of the substrate, suggests that spermidine binding rearranges the relative orientation of the PotD domains to create a more compact structure [7].
  • The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis [8].
  • These sites permit distinction of the "open cleft" (without bound sugar) and closed (with bound sugar) conformations of the binding protein by the chemotactic signal transducer with which the maltodextrin-binding protein interacts.(ABSTRACT TRUNCATED AT 250 WORDS)[8]
 

Chemical compound and disease context of malE

 

Biological context of malE

  • The plasmid with the malE-pilR fusion, when introduced into a non-piliated pilR mutant strain of P. aeruginosa, restored piliation, indicating that the hybrid protein retains PilR function in vivo [11].
  • Guided by such matches, synthetic oligonucleotides corresponding to DNA sequences identical to fhuA were fused to malE; peptides corresponding to the above regions were displayed at the N terminus of E.coli maltose-binding protein (MBP) [12].
  • The region of the proximal gene, malE of the malEFG operon, was identified on the basis of the known amino acid sequence of the precursor molecule of maltose-binding protein [13].
  • The non-coding region between malE and malK is 299 base pairs long and contains two long GC clusters [13].
  • The product of the malE-lacZ gene fusion was reported to compete with some proteins including outer membrane lipoprotein in the protein translocation across the Escherichia coli membrane [14].
 

Anatomical context of malE

 

Associations of malE with chemical compounds

 

Analytical, diagnostic and therapeutic context of malE

References

  1. A mutation in the receiver domain of the Agrobacterium tumefaciens transcriptional regulator VirG increases its affinity for operator DNA. Han, D.C., Winans, S.C. Mol. Microbiol. (1994) [Pubmed]
  2. Maltose and maltodextrin transport in the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius is mediated by a high-affinity transport system that includes a maltose binding protein tolerant to low pH. Hülsmann, A., Lurz, R., Scheffel, F., Schneider, E. J. Bacteriol. (2000) [Pubmed]
  3. Purification and in vitro characterization of the maltose-binding protein of the plant pathogen Xanthomonas citri. Balan, A., de Souza, C.S., Moutran, A., Ferreira, R.C., Franco, C.S., Ramos, C.H., de Souza Ferreira, L.C. Protein Expr. Purif. (2005) [Pubmed]
  4. Crystal structure of a recombinant form of the maltodextrin-binding protein carrying an inserted sequence of a B-cell epitope from the preS2 region of hepatitis B virus. Saul, F.A., Vulliez-le Normand, B., Lema, F., Bentley, G.A. Proteins (1997) [Pubmed]
  5. Model of maltose-binding protein/chemoreceptor complex supports intrasubunit signaling mechanism. Zhang, Y., Gardina, P.J., Kuebler, A.S., Kang, H.S., Christopher, J.A., Manson, M.D. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  6. Post-translational modification and processing of Escherichia coli prolipoprotein in vitro. Tokunaga, M., Tokunaga, H., Wu, H.C. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  7. Crystal structure of PotD, the primary receptor of the polyamine transport system in Escherichia coli. Sugiyama, S., Vassylyev, D.G., Matsushima, M., Kashiwagi, K., Igarashi, K., Morikawa, K. J. Biol. Chem. (1996) [Pubmed]
  8. The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. Spurlino, J.C., Lu, G.Y., Quiocho, F.A. J. Biol. Chem. (1991) [Pubmed]
  9. Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. Mukhopadhyay, R., Rosen, B.P. FEMS Microbiol. Lett. (1998) [Pubmed]
  10. A thermodynamic study of the binding of linear and cyclic oligosaccharides to the maltodextrin-binding protein of Escherichia coli. Thomson, J., Liu, Y., Sturtevant, J.M., Quiocho, F.A. Biophys. Chem. (1998) [Pubmed]
  11. PilR, a transcriptional regulator of piliation in Pseudomonas aeruginosa, binds to a cis-acting sequence upstream of the pilin gene promoter. Jin, S., Ishimoto, K.S., Lory, S. Mol. Microbiol. (1994) [Pubmed]
  12. Phage display reveals multiple contact sites between FhuA, an outer membrane receptor of Escherichia coli, and TonB. Carter, D.M., Gagnon, J.N., Damlaj, M., Mandava, S., Makowski, L., Rodi, D.J., Pawelek, P.D., Coulton, J.W. J. Mol. Biol. (2006) [Pubmed]
  13. Nucleotide sequence of the regulatory region of malB operons in E. coli. Ohsumi, M., Sekiya, T., Nishimura, S., Ohki, M. J. Biochem. (1983) [Pubmed]
  14. Translocation of colicin E1 through cytoplasmic membrane of Escherichia coli. Yamada, M., Miki, T., Nakazawa, A. FEBS Lett. (1982) [Pubmed]
  15. A salt-bridge motif involved in ligand binding and large-scale domain motions of the maltose-binding protein. Stockner, T., Vogel, H.J., Tieleman, D.P. Biophys. J. (2005) [Pubmed]
  16. MalE of Group A Streptococcus Participates in the Rapid Transport of Maltotriose and Longer Maltodextrins. Shelburne, S.A., Fang, H., Okorafor, N., Sumby, P., Sitkiewicz, I., Keith, D., Patel, P., Austin, C., Graviss, E.A., Musser, J.M., Chow, D.C. J. Bacteriol. (2007) [Pubmed]
  17. Both linked and unlinked mutations can alter the intracellular site of synthesis of exported proteins of Escherichia coli. Rasmussen, B.A., Bassford, P.J. J. Bacteriol. (1985) [Pubmed]
  18. Synthesis of the Streptomyces lividans maltodextrin ABC transporter depends on the presence of the regulator MalR. Schlösser, A., Weber, A., Schrempf, H. FEMS Microbiol. Lett. (2001) [Pubmed]
  19. Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy. Evenäs, J., Tugarinov, V., Skrynnikov, N.R., Goto, N.K., Muhandiram, R., Kay, L.E. J. Mol. Biol. (2001) [Pubmed]
  20. Atomic interactions in protein-carbohydrate complexes. Tryptophan residues in the periplasmic maltodextrin receptor for active transport and chemotaxis. Spurlino, J.C., Rodseth, L.E., Quiocho, F.A. J. Mol. Biol. (1992) [Pubmed]
  21. An NMR study of ligand binding by maltodextrin binding protein. Gehring, K., Zhang, X., Hall, J., Nikaido, H., Wemmer, D.E. Biochem. Cell Biol. (1998) [Pubmed]
  22. Crystallization of the maltodextrin-binding protein for active transport and chemotaxis in several different liganded and mutant forms. Rodseth, L., Quiocho, F.A. J. Mol. Biol. (1993) [Pubmed]
 
WikiGenes - Universities