The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Expression cloning of mouse cDNA of CMP-NeuAc:Lactosylceramide alpha2,3-sialyltransferase, an enzyme that initiates the synthesis of gangliosides.

Expression cloning of a cDNA for the alpha2,3-sialyltransferase (GM3 synthase) (EC 2.4.99.-) gene was performed using a GM3-lacking mouse fibroblast line L cell and anti-GM3 monoclonal antibody. Plasmids from a cDNA library generated with poly(A)+ RNA of a mouse fibrosarcoma line CMS5j and pdl3027 (polyoma T antigen) were co-transfected into L cells. The isolated cDNA clone pM3T-7 predicted a type II membrane protein with 13 amino acids of cytoplasmic domain, 17 amino acids of transmembrane region, and a large catalytic domain with 329 amino acids. Introduction of the cDNA clone into L cells resulted in the neo-synthesis of GM3 and high activity of alpha2,3-sialyltransferase. Among glycosphingolipids, only lactosylceramide showed significant activity as an acceptor, indicating that this gene product is a sialyltransferase specific for the synthesis of GM3. An amino acid sequence deduced from the cloned cDNA showed the typical sialyl motif with common features among alpha2,3-sialyltransferases. Among various mouse tissues, brain, liver, and testis showed relatively high expression of a 2.3-kilobase mRNA, whereas all tissues, more or less, expressed this gene.[1]

References

  1. Expression cloning of mouse cDNA of CMP-NeuAc:Lactosylceramide alpha2,3-sialyltransferase, an enzyme that initiates the synthesis of gangliosides. Fukumoto, S., Miyazaki, H., Goto, G., Urano, T., Furukawa, K., Furukawa, K. J. Biol. Chem. (1999) [Pubmed]
 
WikiGenes - Universities