The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Intracellular expression of the ADP-ribosyltransferase domain of Pseudomonas exoenzyme S is cytotoxic to eukaryotic cells.

Exoenzyme S of Pseudomonas aeruginosa is an ADP-ribosyltransferase, which is secreted via a type III-dependent secretion mechanism and has been demonstrated to exert cytotoxic effects on eukaryotic cells. Alignment studies predict that the amino-terminus of exoenzyme S has limited primary amino acid homology with the YopE cytotoxin of Yersinia, while biochemical studies have localized the FAS-dependent ADP-ribosyltransferase activity to the carboxyl-terminus. Thus, exoenzyme S could interfere with host cell physiology via several independent mechanisms. The goal of this study was to define the role of the ADP-ribosyltransferase domain in the modulation of eukaryotic cell physiology. The carboxyl-terminal 222 amino acids of exoenzyme S, which represent the FAS-dependent ADP-ribosyltransferase domain (termed deltaN222), and a point mutant, deltaN222-E381A, which possesses a 2000-fold reduction in the capacity to ADP-ribosylate, were transiently expressed in eukaryotic cells under the control of the immediate early CMV promoter. Lysates from cells transfected with deltaN222 expressed ADP-ribosyltransferase activity. Co-transfection of deltaN222, but not deltaN222-E381A, resulted in a decrease in the steady-state levels of two reporter proteins, green fluorescent protein and luciferase, in both CHO and Vero cells. In addition, transfection with deltaN222 resulted in a greater percentage of cells staining with trypan blue than when cells were transfected with either deltaN222-E381A or control plasmid. Together, these data indicate that expression of the ADP-ribosyltransferase domain of exoenzyme S is cytotoxic to eukaryotic cells.[1]

References

 
WikiGenes - Universities