The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regulation of the murine NMDA-receptor-subunit NR2C promoter by Sp1 and fushi tarazu factor1 (FTZ-F1) homologues.

We have cloned the 5'-region of the murine N-methyl-d-aspartate (NMDA) receptor channel subunit NR2C (GluRepsilon3) gene and characterized the cis- and trans-activating regulatory elements responsible for its tissue specific activity. By using a native epsilon3-promoter/lacZ-construct & various 5'-deletion constructs, we compared beta-galactosidase expression in non-neuronal NIH3T3 cells and in neuronal epsilon3-gene-expressing HT-4 cells and show that large parts of the epsilon3 promoter are responsible for the repression of the epsilon3 gene in non-neuronal cells. Deletion of exon 1 sequences led to an enhancement of epsilon3 transcription, suggesting a role of the 5'-untranslated region in epsilon3 gene regulation. Sequence analysis of the promoter region revealed potential binding sites for the transcription factor Sp1, the murine fushi tarazu factor1 (FTZ-F1) homologues, embryonic LTR binding proteins (ELP1,2,3) and steroidogenic factor (SF-1), as well as for the chicken ovalbumin upstream promoter transcription-factor (COUP-TF). Electrophoretic mobility shift assays confirmed specific binding of Sp1, SF-1 and COUP-TFI. Whereas point mutation studies indicate that, in neuronal HT-4 cells, Sp1 is apparently not critically involved in basal epsilon3 gene transcription, SF1 is a positive regulator. This was evident from a selective enhancement of epsilon3-promoter-driven reporter gene expression upon cotransfection of an SF1-expression vector, which was reverted by deletion and point mutation of the SF1 binding site.[1]

References

  1. Regulation of the murine NMDA-receptor-subunit NR2C promoter by Sp1 and fushi tarazu factor1 (FTZ-F1) homologues. Pieri, I., Klein, M., Bayertz, C., Gerspach, J., van der Ploeg, A., Pfizenmaier, K., Eisel, U. Eur. J. Neurosci. (1999) [Pubmed]
 
WikiGenes - Universities