The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice.

Interleukin-6 (IL-6) is a multifunctional cytokine mediating inflammatory or immune reactions. Here we investigated the possible role of IL-6 in the intact or lesioned peripheral nervous system using adult IL-6 gene knockout (IL-6(-/-)) mice. Various sensory functions were tested by applying electrophysiological, morphological, biochemical, and behavioral methods. There was a 60% reduction of the compound action potential of the sensory branch of IL-6(-/-) mice as compared with the motor branch in the intact sciatic nerve. Cross sections of L5 DRG of IL-6(-/-) mice showed a shift in the relative size distribution of the neurons. The temperature sensitivity of IL-6(-/-) mice was also significantly reduced. After crush lesion of the sciatic nerve, its functional recovery was delayed in IL-6(-/-) mice as analyzed from a behavioral footprint assay. Measurements of compound action potentials 20 d after crush lesion showed that there was a very low level of recovery of the sensory but not of the motor branch of IL-6(-/-) mice. Similar results of sensory impairments were obtained with mice showing slow Wallerian degeneration (Wlds) and a delayed lesion-induced recruitment of macrophages. However, in contrast to WldS mice, in IL-6(-/-) mice we observed the characteristic lesion- induced invasion of macrophages and the upregulation of low-affinity neurotrophin receptor p75 (p75LNTR) mRNA levels identical to those of IL-6(+/+) mice. Thus, the mechanisms leading to the common sensory deficiencies were different between IL-6(-/-) and WldS mice. Altogether, the results suggest that interleukin-6 is essential to modulate sensory functions in vivo.[1]

References

  1. Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice. Zhong, J., Dietzel, I.D., Wahle, P., Kopf, M., Heumann, R. J. Neurosci. (1999) [Pubmed]
 
WikiGenes - Universities