The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Tnfrsf1b  -  tumor necrosis factor receptor superfamily...

Mus musculus

Synonyms: CD120b, TNF-R-II, TNF-R2, TNF-R75, TNF-RII, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Tnfrsf1b


High impact information on Tnfrsf1b

  • MemTNF-induced apoptosis was mediated through both TNF-R1 and TNF-R2 [5].
  • The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI [6].
  • Wild-type and TNFR2-deficient OT-I cells were activated and then deleted when transferred into RIP-mOVA mice, whereas CD95-deficient OT-I cells were not susceptible to deletion by cross-presentation [7].
  • In the TNFR2-mediated signaling pathways, TRAF2 works as a mediator for activation signals such as NF-kappaB, but the role of TRAF1 has not been previously determined [8].
  • Antiviral activity of tumor necrosis factor (TNF) is mediated via p55 and p75 TNF receptors [9].

Chemical compound and disease context of Tnfrsf1b


Biological context of Tnfrsf1b

  • TNFR1-/- and TNFR2-/- mice displayed a normal spleen microarchitecture and mounted an IgM and IgG antibody response to SRBC [14].
  • The induction of DNA synthesis and the suppression of apoptosis in response to nafenopin was abrogated completely by blocking antibodies to TNFR1 but not to TNFR2 [15].
  • A similar response was seen in mice genetically deficient for either TNFR1, TNFR2, or both TNFRs, whereas IFN-gammaR-deficient (IFN-gammaR0/0) mice were found to be defective in the up-regulation of these molecules [16].
  • We also determined whether activated p55(-/-) and p75(-/-) T cells differ in their sensitivity to cell death induced by TCR cross-linking [17].
  • Glutamate-induced triggering of the ionotropic N-methyl-D-aspartate receptor was required for the enhanced and persistent phosphatidylinositol 3-kinase-dependent NF-kappa B activation by TNFR2, indicating a positive cooperation of TNF and neurotransmitter-induced signal pathways [18].

Anatomical context of Tnfrsf1b

  • To determine whether TNF contributed to the bile duct damage seen in chronically-infected animals, we bred B6 mice with disrupted genes for Tnfrsf1a, Tnfrsf1b and Tnfsf5 [19].
  • Therefore, the massive difference in magnitude for the secondary, although not the primary, response to these D(b)NP(366) and D(b)PA(224) epitopes cannot be considered to reflect differential TNFR2-mediated T cell editing [20].
  • Collectively, our results provide evidence of a role for the p75 TNFR in cell death in that TNF signaling through TNFR2 sensitizes lymphoid cells for Fas-mediated apoptosis [21].
  • Macrophages of tmTNFnc mice also produced less TNFR2 than WT macrophages (-30%) [22].
  • In conclusion, an increase in tmTNF levels, rather than the lack of sTNF, significantly down-modulated TNFR2 synthesis in aortic endothelial cells, but had no major influence on the synthesis of some major pro-inflammatory and pro-atherothrombotic proteins [22].

Associations of Tnfrsf1b with chemical compounds


Physical interactions of Tnfrsf1b

  • In contrast, p75 is nonredundantly coupled to sustained AKT activity and NF-kappaB activation in response to TCR/CD28-mediated stimulation [26].
  • Expression of the p75 interleukin 2-binding protein on CD3+4-8-Tac- cells from autoimmune MRL/MP-lpr/lpr mice [27].

Regulatory relationships of Tnfrsf1b


Other interactions of Tnfrsf1b


Analytical, diagnostic and therapeutic context of Tnfrsf1b


  1. Crucial role of TNF receptor type 1 (p55), but not of TNF receptor type 2 (p75), in murine toxoplasmosis. Deckert-Schlüter, M., Bluethmann, H., Rang, A., Hof, H., Schlüter, D. J. Immunol. (1998) [Pubmed]
  2. Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2. Lundberg, P., Welander, P.V., Edwards, C.K., van Rooijen, N., Cantin, E. J. Virol. (2007) [Pubmed]
  3. Divergent roles for p55 and p75 tumor necrosis factor receptors in the pathogenesis of MOG(35-55)-induced experimental autoimmune encephalomyelitis. Suvannavejh, G.C., Lee, H.O., Padilla, J., Dal Canto, M.C., Barrett, T.A., Miller, S.D. Cell. Immunol. (2000) [Pubmed]
  4. Tumor necrosis factor-alpha impairs contact hypersensitivity induction after ultraviolet B radiation via TNF-receptor 2 (p75). Kurimoto, I., Streilein, J.W. Exp. Dermatol. (1999) [Pubmed]
  5. Membrane-bound TNF supports secondary lymphoid organ structure but is subservient to secreted TNF in driving autoimmune inflammation. Ruuls, S.R., Hoek, R.M., Ngo, V.N., McNeil, T., Lucian, L.A., Janatpour, M.J., Körner, H., Scheerens, H., Hessel, E.M., Cyster, J.G., McEvoy, L.M., Sedgwick, J.D. Immunity (2001) [Pubmed]
  6. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Yamashita, T., Tohyama, M. Nat. Neurosci. (2003) [Pubmed]
  7. The peripheral deletion of autoreactive CD8+ T cells induced by cross-presentation of self-antigens involves signaling through CD95 (Fas, Apo-1). Kurts, C., Heath, W.R., Kosaka, H., Miller, J.F., Carbone, F.R. J. Exp. Med. (1998) [Pubmed]
  8. A regulatory role for TRAF1 in antigen-induced apoptosis of T cells. Speiser, D.E., Lee, S.Y., Wong, B., Arron, J., Santana, A., Kong, Y.Y., Ohashi, P.S., Choi, Y. J. Exp. Med. (1997) [Pubmed]
  9. Antiviral activity of tumor necrosis factor (TNF) is mediated via p55 and p75 TNF receptors. Ruby, J., Bluethmann, H., Peschon, J.J. J. Exp. Med. (1997) [Pubmed]
  10. Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. Fontaine, V., Mohand-Said, S., Hanoteau, N., Fuchs, C., Pfizenmaier, K., Eisel, U. J. Neurosci. (2002) [Pubmed]
  11. Contributions of angiotensin II and tumor necrosis factor-alpha to the development of renal fibrosis. Guo, G., Morrissey, J., McCracken, R., Tolley, T., Liapis, H., Klahr, S. Am. J. Physiol. Renal Physiol. (2001) [Pubmed]
  12. Synergism of Pseudomonas aeruginosa exotoxin A with endotoxin, superantigen, or TNF results in TNFR1- and TNFR2-dependent liver toxicity in mice. Schümann, J., Bluethmann, H., Tiegs, G. Immunol. Lett. (2000) [Pubmed]
  13. Transgenic Mice Expressing the p75 CCAAT-Displacement Protein/Cut Homeobox Isoform Develop a Myeloproliferative Disease-Like Myeloid Leukemia. Cadieux, C., Fournier, S., Peterson, A.C., B??dard, C., Bedell, B.J., Nepveu, A. Cancer Res. (2006) [Pubmed]
  14. Differentiation of follicular dendritic cells and full antibody responses require tumor necrosis factor receptor-1 signaling. Le Hir, M., Bluethmann, H., Kosco-Vilbois, M.H., Müller, M., di Padova, F., Moore, M., Ryffel, B., Eugster, H.P. J. Exp. Med. (1996) [Pubmed]
  15. Role for tumor necrosis factor alpha receptor 1 and interleukin-1 receptor in the suppression of mouse hepatocyte apoptosis by the peroxisome proliferator nafenopin. West, D.A., James, N.H., Cosulich, S.C., Holden, P.R., Brindle, R., Rolfe, M., Roberts, R.A. Hepatology (1999) [Pubmed]
  16. Interferon-gamma receptor-mediated but not tumor necrosis factor receptor type 1- or type 2-mediated signaling is crucial for the activation of cerebral blood vessel endothelial cells and microglia in murine Toxoplasma encephalitis. Deckert-Schlüter, M., Bluethmann, H., Kaefer, N., Rang, A., Schlüter, D. Am. J. Pathol. (1999) [Pubmed]
  17. TNF receptor 2-deficient CD8 T cells are resistant to Fas/Fas ligand-induced cell death. Teh, H.S., Seebaran, A., Teh, S.J. J. Immunol. (2000) [Pubmed]
  18. Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. Marchetti, L., Klein, M., Schlett, K., Pfizenmaier, K., Eisel, U.L. J. Biol. Chem. (2004) [Pubmed]
  19. Requirement for TNF-Tnfrsf1 signalling for sclerosing cholangitis in mice chronically infected by Cryptosporidium parvum. Ponnuraj, E.M., Hayward, A.R. Clin. Exp. Immunol. (2002) [Pubmed]
  20. Differential tumor necrosis factor receptor 2-mediated editing of virus-specific CD8+ effector T cells. Turner, S.J., La Gruta, N.L., Stambas, J., Diaz, G., Doherty, P.C. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  21. Regulation of Fas ligand-induced apoptosis by TNF. Elzey, B.D., Griffith, T.S., Herndon, J.M., Barreiro, R., Tschopp, J., Ferguson, T.A. J. Immunol. (2001) [Pubmed]
  22. Proinflammatory properties of murine aortic endothelial cells exclusively expressing a non cleavable form of TNFalpha. Effect on tumor necrosis factor alpha receptor type 2. Canault, M., Peiretti, F., Mueller, C., Deprez, P., Bonardo, B., Bernot, D., Juhan-Vague, I., Nalbone, G. Thromb. Haemost. (2004) [Pubmed]
  23. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Yin, M., Wheeler, M.D., Kono, H., Bradford, B.U., Gallucci, R.M., Luster, M.I., Thurman, R.G. Gastroenterology (1999) [Pubmed]
  24. Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. Theiss, A.L., Simmons, J.G., Jobin, C., Lund, P.K. J. Biol. Chem. (2005) [Pubmed]
  25. Tumor necrosis factor (TNF) receptor type 1 (p55) is a main mediator for TNF-alpha-induced skin inflammation. Kondo, S., Sauder, D.N. Eur. J. Immunol. (1997) [Pubmed]
  26. Critical role of TNF receptor type-2 (p75) as a costimulator for IL-2 induction and T cell survival: a functional link to CD28. Kim, E.Y., Teh, H.S. J. Immunol. (2004) [Pubmed]
  27. Expression of the p75 interleukin 2-binding protein on CD3+4-8-Tac- cells from autoimmune MRL/MP-lpr/lpr mice. Gutierrez-Ramos, J.C., Pezzi, L., Palacios, R., Martínez, C. Eur. J. Immunol. (1989) [Pubmed]
  28. Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice. Zhong, J., Dietzel, I.D., Wahle, P., Kopf, M., Heumann, R. J. Neurosci. (1999) [Pubmed]
  29. IL-12 production by central nervous system microglia is inhibited by astrocytes. Aloisi, F., Penna, G., Cerase, J., Menéndez Iglesias, B., Adorini, L. J. Immunol. (1997) [Pubmed]
  30. Activation of platelet caspases by TNF and its consequences for kinetics. Piguet, P.F., Vesin, C., Da Kan, C. Cytokine (2002) [Pubmed]
  31. Monoclonal antibodies specific for murine p55 and p75 tumor necrosis factor receptors: identification of a novel in vivo role for p75. Sheehan, K.C., Pinckard, J.K., Arthur, C.D., Dehner, L.P., Goeddel, D.V., Schreiber, R.D. J. Exp. Med. (1995) [Pubmed]
  32. Divergent roles for p55 and p75 TNF-alpha receptors in the induction of plasminogen activator inhibitor-1. Pandey, M., Tuncman, G., Hotamisligil, G.S., Samad, F. Am. J. Pathol. (2003) [Pubmed]
  33. Tumor necrosis factor receptor 2 contributes to ozone-induced airway hyperresponsiveness in mice. Shore, S.A., Schwartzman, I.N., Le Blanc, B., Murthy, G.G., Doerschuk, C.M. Am. J. Respir. Crit. Care Med. (2001) [Pubmed]
  34. Distribution of tumor necrosis factor receptor messenger RNA in normal and herpes simplex virus infected trigeminal ganglia in the mouse. Cunningham, E.T., Stalder, A.K., Sanna, P.P., Liu, S.S., Bloom, F.E., Howes, E.L., Campbell, I.L., Margolis, T.P. Brain Res. (1997) [Pubmed]
  35. Lethal hepatic apoptosis mediated by tumor necrosis factor receptor, unlike Fas-mediated apoptosis, requires hepatocyte sensitization in mice. Nagaki, M., Sugiyama, A., Osawa, Y., Naiki, T., Nakashima, S., Nozawa, Y., Moriwaki, H. J. Hepatol. (1999) [Pubmed]
  36. Tumor necrosis factor-alpha-activated cell death pathways in NIT-1 insulinoma cells and primary pancreatic beta cells. Stephens, L.A., Thomas, H.E., Ming, L., Grell, M., Darwiche, R., Volodin, L., Kay, T.W. Endocrinology (1999) [Pubmed]
WikiGenes - Universities