The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Protection against CD95-mediated apoptosis by inorganic mercury in Jurkat T cells.

Dysregulation of CD95/Fas-mediated apoptosis has been implicated as a contributing factor in autoimmune disorders. Animal studies clearly have established a connection between mercury exposure and autoimmune disease in rodents, while case reports have suggested a link between accidental mercury contamination and autoimmune disease in humans. The mechanism(s) for these associations are poorly understood. Using the Jurkat cell model, we have found that low levels (</=10 microM) of inorganic mercury (i.e., HgCl2) attenuated anti-CD95-mediated growth arrest and markedly enhanced cell survival. Several biochemical assays for apoptosis, including DNA degradation, poly(ADP-ribose) polymerase degradation, and phosphatidylserine externalization, directly verified that HgCl2 attenuated anti-CD95-mediated apoptosis. In an attempt to further characterize the effect of mercury on CD95-mediated apoptosis, several signaling components of the CD95 death pathway were analyzed to determine whether HgCl2 could modulate them. HgCl2 did not modulate CD95 expression; however, it did block CD95-induced caspase-3 activation. HgCl2 was not able to attenuate TNF-alpha-mediated apoptosis in U-937 cells, or ceramide-C6-mediated apoptosis in Jurkat cells, suggesting that mercury acts upstream of, or does not involve, these signals. Thus, inorganic mercury specifically attenuates CD95-mediated apoptosis likely by targeting a signaling component that is upstream of caspase-3 activation and downstream of CD95.[1]

References

  1. Protection against CD95-mediated apoptosis by inorganic mercury in Jurkat T cells. Whitekus, M.J., Santini, R.P., Rosenspire, A.J., McCabe, M.J. J. Immunol. (1999) [Pubmed]
 
WikiGenes - Universities