The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sarcoplasmic reticulum Ca(2+) release by 4-chloro-m-cresol (4-CmC) in intact and chemically skinned ferret cardiac ventricular fibers.

The purpose of this study was to determine whether 4-chloro-m-cresol (4-CmC) could generate caffeine-like responses in ferret cardiac muscle. The concentration dependence of 4-CmC-mediated release of Ca(2+) from the sarcoplasmic reticulum was studied in intact cardiac trabeculae and saponin-skinned fibers in which the sarcoplasmic reticulum was loaded with Ca(2+). In intact and saponin-skinned preparations isolated from right ventricle, the effect of 4-CmC on sarcoplasmic reticulum Ca(2+) content was estimated by analysis of caffeine contracture after application of chlorocresol. In addition, the effects of 4-CmC on maximal Ca(2+)-activated tension and the Ca(2+) sensitivity of myofibrils were analyzed by using Triton-skinned cardiac fibers. The results show that 4-CmC generates a contractile response in saponin-skinned but not intact fibers. The sarcoplasmic reticulum is implicated in the 4-CmC response; more precisely, in Ca(2+) release via the ryanodine receptor. Moreover, 4-CmC, like caffeine, has effects on maximal Ca(2+)-activated tension and the Ca(2+) sensitivity of myofibrils.[1]

References

 
WikiGenes - Universities