The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis.

The lic operon of Bacillus subtilis is required for the transport and degradation of oligomeric beta-glucosides, which are produced by extracellular enzymes on substrates such as lichenan or barley glucan. The lic operon is transcribed from a sigma(A)-dependent promoter and is inducible by lichenan, lichenan hydrolysate, and cellobiose. Induction of the operon requires a DNA sequence with dyad symmetry located immediately upstream of the licBCAH promoter. Expression of the lic operon is positively controlled by the LicR regulator protein, which contains two potential helix-turn-helix motifs, two phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulation domains (PRDs), and a domain similar to PTS enzyme IIA (EIIA). The activity of LicR is stimulated by modification (probably phosphorylation) of both PRD-I and PRD-II by the general PTS components and is negatively regulated by modification (probably phosphorylation) of its EIIA domain by the specific EII(Lic) in the absence of oligomeric beta-glucosides. This was shown by the analysis of licR mutants affected in potential phosphorylation sites. Moreover, the lic operon is subject to carbon catabolite repression (CCR). CCR takes place via a CcpA-dependent mechanism and a CcpA-independent mechanism in which the general PTS enzyme HPr is involved.[1]

References

 
WikiGenes - Universities